Spaces:
Running
Running
Alex
commited on
Commit
·
3b62419
1
Parent(s):
7077928
added endpoint
Browse files- README.md +12 -0
- app.py +42 -27
- woman_with_bag.jpeg +0 -0
README.md
CHANGED
@@ -10,3 +10,15 @@ pinned: false
|
|
10 |
---
|
11 |
|
12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
---
|
11 |
|
12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
13 |
+
|
14 |
+
|
15 |
+
curl -X POST "https://alexgenovese-segmentation.hf.space/api/predict" \
|
16 |
+
-F "data=[{\"type\": \"image\", \"value\": null}]" \
|
17 |
+
-F "data=@woman_with_bag.jpeg" \
|
18 |
+
-H "Content-Type: multipart/form-data" \
|
19 |
+
-o response.json
|
20 |
+
|
21 |
+
|
22 |
+
curl -X POST "https://alexgenovese-segmentation.hf.space/api/predict" \
|
23 |
+
-F "data=[{\"type\": \"image\", \"value\": null}]" \
|
24 |
+
-F "data=@woman_with_bag.jpeg" \
|
app.py
CHANGED
@@ -1,48 +1,63 @@
|
|
1 |
-
import
|
2 |
from transformers import SamModel, SamProcessor
|
|
|
3 |
from PIL import Image
|
4 |
import numpy as np
|
5 |
-
import
|
|
|
6 |
|
7 |
-
#
|
|
|
|
|
|
|
8 |
model = SamModel.from_pretrained("facebook/sam-vit-base")
|
9 |
processor = SamProcessor.from_pretrained("facebook/sam-vit-base")
|
10 |
-
model.to("cpu") #
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
# Prepara l'input per SAM (segmentazione automatica)
|
17 |
-
inputs = processor(img, return_tensors="pt").to("cpu")
|
18 |
|
19 |
# Inferenza
|
20 |
with torch.no_grad():
|
21 |
outputs = model(**inputs, multimask_output=False)
|
22 |
|
23 |
-
# Post-processa
|
24 |
mask = processor.image_processor.post_process_masks(
|
25 |
outputs.pred_masks, inputs["original_sizes"], inputs["reshaped_input_sizes"]
|
26 |
)[0][0].cpu().numpy()
|
27 |
|
28 |
-
# Converti la maschera in
|
29 |
mask_img = Image.fromarray((mask * 255).astype(np.uint8))
|
30 |
|
31 |
-
#
|
32 |
-
|
|
|
|
|
33 |
|
34 |
-
|
|
|
|
|
|
|
35 |
|
36 |
-
#
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
|
|
|
|
|
|
|
|
47 |
|
48 |
-
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, File, UploadFile
|
2 |
from transformers import SamModel, SamProcessor
|
3 |
+
import torch
|
4 |
from PIL import Image
|
5 |
import numpy as np
|
6 |
+
import io
|
7 |
+
import base64
|
8 |
|
9 |
+
# Inizializza l'app FastAPI
|
10 |
+
app = FastAPI()
|
11 |
+
|
12 |
+
# Carica il modello e il processore SAM
|
13 |
model = SamModel.from_pretrained("facebook/sam-vit-base")
|
14 |
processor = SamProcessor.from_pretrained("facebook/sam-vit-base")
|
15 |
+
model.to("cpu") # Usa CPU per il free tier
|
16 |
|
17 |
+
# Funzione per segmentare l'immagine
|
18 |
+
def segment_image(image: Image.Image):
|
19 |
+
# Prepara l'input per SAM
|
20 |
+
inputs = processor(image, return_tensors="pt").to("cpu")
|
|
|
|
|
21 |
|
22 |
# Inferenza
|
23 |
with torch.no_grad():
|
24 |
outputs = model(**inputs, multimask_output=False)
|
25 |
|
26 |
+
# Post-processa la maschera
|
27 |
mask = processor.image_processor.post_process_masks(
|
28 |
outputs.pred_masks, inputs["original_sizes"], inputs["reshaped_input_sizes"]
|
29 |
)[0][0].cpu().numpy()
|
30 |
|
31 |
+
# Converti la maschera in immagine
|
32 |
mask_img = Image.fromarray((mask * 255).astype(np.uint8))
|
33 |
|
34 |
+
# Converti la maschera in base64 per la risposta
|
35 |
+
buffered = io.BytesIO()
|
36 |
+
mask_img.save(buffered, format="PNG")
|
37 |
+
mask_base64 = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
38 |
|
39 |
+
# Annotazioni
|
40 |
+
annotations = {"mask": mask.tolist(), "label": "object"}
|
41 |
+
|
42 |
+
return mask_base64, annotations
|
43 |
|
44 |
+
# Endpoint API
|
45 |
+
@app.post("/segment")
|
46 |
+
async def segment_endpoint(file: UploadFile = File(...)):
|
47 |
+
# Leggi l'immagine caricata
|
48 |
+
image_data = await file.read()
|
49 |
+
image = Image.open(io.BytesIO(image_data)).convert("RGB")
|
50 |
+
|
51 |
+
# Segmenta l'immagine
|
52 |
+
mask_base64, annotations = segment_image(image)
|
53 |
+
|
54 |
+
# Restituisci la risposta
|
55 |
+
return {
|
56 |
+
"mask": f"data:image/png;base64,{mask_base64}",
|
57 |
+
"annotations": annotations
|
58 |
+
}
|
59 |
|
60 |
+
# Per compatibilità con Hugging Face Spaces (Uvicorn viene gestito automaticamente)
|
61 |
+
if __name__ == "__main__":
|
62 |
+
import uvicorn
|
63 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|
woman_with_bag.jpeg
ADDED
![]() |