Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,693 Bytes
780320d d73c075 780320d d73c075 780320d d73c075 780320d 87c1890 780320d d73c075 780320d d73c075 87c1890 24ee135 780320d 24ee135 d73c075 24ee135 87c1890 d73c075 780320d d73c075 780320d 87c1890 780320d 87c1890 780320d 87c1890 780320d 24ee135 780320d 24ee135 780320d 87c1890 780320d 24ee135 87c1890 24ee135 87c1890 780320d 87c1890 d73c075 87c1890 d73c075 87c1890 d73c075 87c1890 780320d d73c075 780320d 87c1890 780320d 24ee135 780320d 87c1890 780320d 24ee135 87c1890 d73c075 87c1890 d73c075 87c1890 d73c075 87c1890 780320d d73c075 780320d d73c075 780320d 87c1890 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 |
import gradio as gr
import subprocess
import os
import shutil
from pathlib import Path
from PIL import Image, ImageDraw
import spaces
# ------------------------------------------------------------------
# CONFIGURE THESE PATHS TO MATCH YOUR PROJECT STRUCTURE
# ------------------------------------------------------------------
INPUT_DIR = "samples"
OUTPUT_DIR = "inference_results/coz_vlmprompt"
# ------------------------------------------------------------------
# HELPER: Resize & center-crop to 512, preserving aspect ratio
# ------------------------------------------------------------------
def resize_and_center_crop(img: Image.Image, size: int) -> Image.Image:
"""
Resize the input PIL image so that its shorter side == `size`,
then center-crop to exactly (size x size).
"""
w, h = img.size
scale = size / min(w, h)
new_w, new_h = int(w * scale), int(h * scale)
img = img.resize((new_w, new_h), Image.LANCZOS)
left = (new_w - size) // 2
top = (new_h - size) // 2
return img.crop((left, top, left + size, top + size))
# ------------------------------------------------------------------
# HELPER: Draw four concentric, centered rectangles on a 512Γ512 image
# ------------------------------------------------------------------
def make_preview_with_boxes(image_path: str, scale_option: str) -> Image.Image:
"""
1) Open the uploaded image from disk.
2) Resize & center-crop it to exactly 512Γ512.
3) Depending on scale_option ("1x","2x","4x"), compute four rectangle sizes:
- "1x": [512, 512, 512, 512]
- "2x": [256, 128, 64, 32]
- "4x": [128, 64, 32, 16]
4) Draw each of those four rectangles (outline only), all centered.
5) Return the modified PIL image.
"""
try:
orig = Image.open(image_path).convert("RGB")
except Exception as e:
# If something fails, return a plain 512Γ512 gray image as fallback
fallback = Image.new("RGB", (512, 512), (200, 200, 200))
draw = ImageDraw.Draw(fallback)
draw.text((20, 20), f"Error:\n{e}", fill="red")
return fallback
# 1. Resize & center-crop to 512Γ512
base = resize_and_center_crop(orig, 512) # now `base.size == (512,512)`
# 2. Determine the four box sizes
scale_int = int(scale_option.replace("x", "")) # e.g. "2x" -> 2
if scale_int == 1:
sizes = [512, 512, 512, 512]
else:
# For scale=2: sizes = [512//2, 512//(2*2), 512//(2*4), 512//(2*8)] -> [256,128,64,32]
# For scale=4: sizes = [512//4, 512//(4*2), 512//(4*4), 512//(4*8)] -> [128,64,32,16]
sizes = [512 // (scale_int * (2 ** i)) for i in range(4)]
draw = ImageDraw.Draw(base)
# 3. Outline color cycle (you can change these or use just one color)
colors = ["red", "lime", "cyan", "yellow"]
width = 3 # thickness of each rectangleβs outline
for idx, s in enumerate(sizes):
# Compute top-left corner so that box is centered in 512Γ512
x0 = (512 - s) // 2
y0 = (512 - s) // 2
x1 = x0 + s
y1 = y0 + s
draw.rectangle([(x0, y0), (x1, y1)], outline=colors[idx % len(colors)], width=width)
return base
# ------------------------------------------------------------------
# HELPER FUNCTIONS FOR INFERENCE & CAPTION (unchanged from your original)
# ------------------------------------------------------------------
@spaces.GPU(duration=120)
def run_with_upload(uploaded_image_path, upscale_option):
"""
1) Clear INPUT_DIR
2) Save the uploaded file as input.png in INPUT_DIR
3) Read `upscale_option` (e.g. "1x", "2x", "4x") β turn it into "1","2","4"
4) Call inference_coz.py with `--upscale <that_value>`
5) Return the FOUR outputβPNG fileβpaths as a Python list, so that Gradio's Gallery
can display them.
"""
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# (Copyβpaste exactly your existing code here; no changes needed)
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
os.makedirs(INPUT_DIR, exist_ok=True)
for fn in os.listdir(INPUT_DIR):
full_path = os.path.join(INPUT_DIR, fn)
try:
if os.path.isfile(full_path) or os.path.islink(full_path):
os.remove(full_path)
elif os.path.isdir(full_path):
shutil.rmtree(full_path)
except Exception as e:
print(f"Warning: could not delete {full_path}: {e}")
if uploaded_image_path is None:
return []
try:
pil_img = Image.open(uploaded_image_path).convert("RGB")
except Exception as e:
print(f"Error: could not open uploaded image: {e}")
return []
save_path = Path(INPUT_DIR) / "input.png"
try:
pil_img.save(save_path, format="PNG")
except Exception as e:
print(f"Error: could not save as PNG: {e}")
return []
upscale_value = upscale_option.replace("x", "") # e.g. "2x" β "2"
cmd = [
"python", "inference_coz.py",
"-i", INPUT_DIR,
"-o", OUTPUT_DIR,
"--rec_type", "recursive_multiscale",
"--prompt_type", "vlm",
"--upscale", upscale_value,
"--lora_path", "ckpt/SR_LoRA/model_20001.pkl",
"--vae_path", "ckpt/SR_VAE/vae_encoder_20001.pt",
"--pretrained_model_name_or_path", "stabilityai/stable-diffusion-3-medium-diffusers",
"--ram_ft_path", "ckpt/DAPE/DAPE.pth",
"--ram_path", "ckpt/RAM/ram_swin_large_14m.pth"
]
try:
subprocess.run(cmd, check=True)
except subprocess.CalledProcessError as err:
print("Inference failed:", err)
return []
per_sample_dir = os.path.join(OUTPUT_DIR, "per-sample", "input")
expected_files = [
os.path.join(per_sample_dir, f"{i}.png")
for i in range(1, 5)
]
for fp in expected_files:
if not os.path.isfile(fp):
print(f"Warning: expected file not found: {fp}")
return []
return expected_files
def get_caption(src_gallery, evt: gr.SelectData):
"""
Given a clickedβon image in the gallery, read the corresponding .txt in
.../per-sample/input/txt and return its contents.
"""
if not src_gallery or not os.path.isfile(src_gallery[evt.index][0]):
return "No caption available."
selected_image_path = src_gallery[evt.index][0]
base = os.path.basename(selected_image_path) # e.g. "2.png"
stem = os.path.splitext(base)[0] # e.g. "2"
txt_folder = os.path.join(OUTPUT_DIR, "per-sample", "input", "txt")
txt_path = os.path.join(txt_folder, f"{int(stem) - 1}.txt")
if not os.path.isfile(txt_path):
return f"Caption file not found: {int(stem) - 1}.txt"
try:
with open(txt_path, "r", encoding="utf-8") as f:
caption = f.read().strip()
return caption if caption else "(Caption file is empty.)"
except Exception as e:
return f"Error reading caption: {e}"
# ------------------------------------------------------------------
# BUILD THE GRADIO INTERFACE (with updated callbacks)
# ------------------------------------------------------------------
css = """
#col-container {
margin: 0 auto;
max-width: 1024px;
}
"""
with gr.Blocks(css=css) as demo:
gr.HTML(
"""
<div style="text-align: center;">
<h1>Chain-of-Zoom</h1>
<p style="font-size:16px;">Extreme Super-Resolution via Scale Autoregression and Preference Alignment</p>
</div>
<br>
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
<a href="https://github.com/bryanswkim/Chain-of-Zoom">
<img src='https://img.shields.io/badge/GitHub-Repo-blue'>
</a>
</div>
"""
)
with gr.Column(elem_id="col-container"):
with gr.Row():
with gr.Column():
# 1) Image upload component
upload_image = gr.Image(
label="Upload your input image",
type="filepath"
)
# 2) Radio for choosing 1Γ / 2Γ / 4Γ upscaling
upscale_radio = gr.Radio(
choices=["1x", "2x", "4x"],
value="2x",
show_label=False
)
# 3) Button to launch inference
run_button = gr.Button("Chain-of-Zoom it")
# 4) Show the 512Γ512 preview with four centered rectangles
preview_with_box = gr.Image(
label="Preview (512Γ512 with centered boxes)",
type="pil", # weβll return a PIL.Image from our function
interactive=False
)
with gr.Column():
# 5) Gallery to display multiple output images
output_gallery = gr.Gallery(
label="Inference Results",
show_label=True,
elem_id="gallery",
columns=[2], rows=[2]
)
# 6) Textbox under the gallery for showing captions
caption_text = gr.Textbox(
label="Caption",
lines=4,
placeholder="Click on any image above to see its caption here."
)
# ------------------------------------------------------------------
# CALLBACK #1: Whenever the user uploads or changes the radio, update preview
# ------------------------------------------------------------------
def update_preview(img_path, scale_opt):
"""
If there's no image uploaded yet, return None (Gradio will show blank).
Otherwise, draw the resized 512Γ512 + four boxes and return it.
"""
if img_path is None:
return None
return make_preview_with_boxes(img_path, scale_opt)
# When the user uploads a new file:
upload_image.change(
fn=update_preview,
inputs=[upload_image, upscale_radio],
outputs=[preview_with_box]
)
# Also trigger preview redraw if they switch 1Γ/2Γ/4Γ after uploading:
upscale_radio.change(
fn=update_preview,
inputs=[upload_image, upscale_radio],
outputs=[preview_with_box]
)
# ------------------------------------------------------------------
# CALLBACK #2: When βChain-of-Zoom itβ is clicked, run inference
# ------------------------------------------------------------------
run_button.click(
fn=run_with_upload,
inputs=[upload_image, upscale_radio],
outputs=[output_gallery]
)
# ------------------------------------------------------------------
# CALLBACK #3: When an image in the gallery is clicked, show its caption
# ------------------------------------------------------------------
output_gallery.select(
fn=get_caption,
inputs=[output_gallery],
outputs=[caption_text]
)
# ------------------------------------------------------------------
# START THE GRADIO SERVER
# ------------------------------------------------------------------
demo.launch(share=True)
|