Spaces:
Running
on
Zero
Running
on
Zero
File size: 30,465 Bytes
0301e15 e1a5218 0301e15 e1a5218 0301e15 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 |
import os
import sys
sys.path.append(os.getcwd())
import yaml
import copy
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import List, Tuple, Optional
import numpy as np
import lpips
from torchvision import transforms
from PIL import Image
from peft import LoraConfig, get_peft_model
from copy import deepcopy
from tqdm import tqdm
from diffusers import StableDiffusion3Pipeline, FluxPipeline
from lora.lora_layers import LoraInjectedLinear, LoraInjectedConv2d
def inject_lora_vae(vae, lora_rank=4, init_lora_weights="gaussian", verbose=False):
"""
Inject LoRA into the VAE's encoder
"""
vae.requires_grad_(False)
vae.train()
# Identify modules to LoRA-ify in the encoder
l_grep = ["conv1", "conv2", "conv_in", "conv_shortcut",
"conv", "conv_out", "to_k", "to_q", "to_v", "to_out.0"]
l_target_modules_encoder = []
for n, p in vae.named_parameters():
if "bias" in n or "norm" in n:
continue
for pattern in l_grep:
if (pattern in n) and ("encoder" in n):
l_target_modules_encoder.append(n.replace(".weight", ""))
elif ("quant_conv" in n) and ("post_quant_conv" not in n):
l_target_modules_encoder.append(n.replace(".weight", ""))
if verbose:
print("The following VAE parameters will get LoRA:")
print(l_target_modules_encoder)
# Create and add a LoRA adapter
lora_conf_encoder = LoraConfig(
r=lora_rank,
init_lora_weights=init_lora_weights,
target_modules=l_target_modules_encoder
)
adapter_name = "default_encoder"
try:
vae.add_adapter(lora_conf_encoder, adapter_name=adapter_name)
vae.set_adapter(adapter_name)
except ValueError as e:
if "already exists" in str(e):
print(f"Adapter with name {adapter_name} already exists. Skipping injection.")
else:
raise e
return vae, l_target_modules_encoder
def _find_modules(model, ancestor_class=None, search_class=[nn.Linear], exclude_children_of=[LoraInjectedLinear]):
# Get the targets we should replace all linears under
if ancestor_class is not None:
ancestors = (
module
for module in model.modules()
if module.__class__.__name__ in ancestor_class
)
else:
# this, in case you want to naively iterate over all modules.
ancestors = [module for module in model.modules()]
for ancestor in ancestors:
for fullname, module in ancestor.named_modules():
if any([isinstance(module, _class) for _class in search_class]):
*path, name = fullname.split(".")
parent = ancestor
while path:
parent = parent.get_submodule(path.pop(0))
if exclude_children_of and any(
[isinstance(parent, _class) for _class in exclude_children_of]
):
continue
yield parent, name, module
def inject_lora(model, ancestor_class, loras=None, r:int=4, dropout_p:float=0.0, scale:float=1.0, verbose:bool=False):
model.requires_grad_(False)
model.train()
names = []
require_grad_params = [] # to be updated
total_lora_params = 0
if loras is not None:
loras = torch.load(loras, map_location=model.device, weights_only=True)
loras = [lora.float() for lora in loras]
for _module, name, _child_module in _find_modules(model, ancestor_class): # SiLU + Linear Block
weight = _child_module.weight
bias = _child_module.bias
if verbose:
print(f'LoRA Injection : injecting lora into {name}')
_tmp = LoraInjectedLinear(
_child_module.in_features,
_child_module.out_features,
_child_module.bias is not None,
r=r,
dropout_p=dropout_p,
scale=scale,
)
_tmp.linear.weight = nn.Parameter(weight.float())
if bias is not None:
_tmp.linear.bias = nn.Parameter(bias.float())
# switch the module
_tmp.to(device=_child_module.weight.device, dtype=torch.float) # keep as float / mixed precision
_module._modules[name] = _tmp
require_grad_params.append(_module._modules[name].lora_up.parameters())
require_grad_params.append(_module._modules[name].lora_down.parameters())
if loras != None:
_module._modules[name].lora_up.weight = nn.Parameter(loras.pop(0))
_module._modules[name].lora_down.weight = nn.Parameter(loras.pop(0))
_module._modules[name].lora_up.weight.requires_grad = True
_module._modules[name].lora_down.weight.requires_grad = True
names.append(name)
if verbose:
# -------- Count LoRA parameters just added --------
lora_up_count = sum(p.numel() for p in _tmp.lora_up.parameters())
lora_down_count = sum(p.numel() for p in _tmp.lora_down.parameters())
lora_total_for_this_layer = lora_up_count + lora_down_count
total_lora_params += lora_total_for_this_layer
print(f" Added {lora_total_for_this_layer} params "
f"(lora_up={lora_up_count}, lora_down={lora_down_count})")
if verbose:
print(f"Total new LoRA parameters added: {total_lora_params}")
return require_grad_params, names
def add_mp_hook(transformer):
'''
For mixed precision of LoRA. (i.e. keep LoRA as float and others as half)
'''
def pre_hook(module, input):
return input.float()
def post_hook(module, input, output):
return output.half()
hooks = []
for _module, name, _child_module in _find_modules(transformer):
if isinstance(_child_module, LoraInjectedLinear):
hook = _child_module.lora_up.register_forward_pre_hook(pre_hook)
hooks.append(hook)
hook = _child_module.lora_down.register_forward_hook(post_hook)
hooks.append(hook)
return transformer, hooks
def compute_density_for_timestep_sampling(
weighting_scheme: str, batch_size: int, logit_mean: float = 0.0, logit_std: float = 1.0, mode_scale: Optional[float] = None
):
"""
Compute the density for sampling the timesteps when doing SD3 training.
Courtesy: This was contributed by Rafie Walker in https://github.com/huggingface/diffusers/pull/8528.
SD3 paper reference: https://arxiv.org/abs/2403.03206v1.
"""
if weighting_scheme == "logit_normal":
# See 3.1 in the SD3 paper ($rf/lognorm(0.00,1.00)$).
u = torch.normal(mean=logit_mean, std=logit_std, size=(batch_size,), device="cpu")
u = torch.nn.functional.sigmoid(u)
elif weighting_scheme == "mode":
u = torch.rand(size=(batch_size,), device="cpu")
u = 1 - u - mode_scale * (torch.cos(math.pi * u / 2) ** 2 - 1 + u)
else:
u = torch.rand(size=(batch_size,), device="cpu")
return u
def compute_loss_weighting_for_sd3(weighting_scheme: str, sigmas):
"""
Computes loss weighting scheme for SD3 training.
Courtesy: This was contributed by Rafie Walker in https://github.com/huggingface/diffusers/pull/8528.
SD3 paper reference: https://arxiv.org/abs/2403.03206v1.
"""
if weighting_scheme == "sigma_sqrt":
weighting = (sigmas**-2.0).float()
elif weighting_scheme == "cosmap":
bot = 1 - 2 * sigmas + 2 * sigmas**2
weighting = 2 / (math.pi * bot)
else:
weighting = torch.ones_like(sigmas)
return weighting
class StableDiffusion3Base():
def __init__(self, model_key:str='stabilityai/stable-diffusion-3-medium-diffusers', device='cuda', dtype=torch.float16):
self.device = device
self.dtype = dtype
pipe = StableDiffusion3Pipeline.from_pretrained(model_key, torch_dtype=self.dtype)
self.scheduler = pipe.scheduler
self.tokenizer_1 = pipe.tokenizer
self.tokenizer_2 = pipe.tokenizer_2
self.tokenizer_3 = pipe.tokenizer_3
self.text_enc_1 = pipe.text_encoder.to(device)
self.text_enc_2 = pipe.text_encoder_2.to(device)
self.text_enc_3 = pipe.text_encoder_3.to(device)
self.vae=pipe.vae.to(device)
self.transformer = pipe.transformer.to(device)
self.transformer.eval()
self.transformer.requires_grad_(False)
self.vae_scale_factor = (
2 ** (len(self.vae.config.block_out_channels)-1) if hasattr(self, "vae") and self.vae is not None else 8
)
del pipe
def encode_prompt(self, prompt: List[str], batch_size:int=1) -> List[torch.Tensor]:
'''
We assume that
1. number of tokens < max_length
2. one prompt for one image
'''
# CLIP encode (used for modulation of adaLN-zero)
# now, we have two CLIPs
text_clip1_ids = self.tokenizer_1(prompt,
padding="max_length",
max_length=77,
truncation=True,
return_tensors='pt').input_ids
text_clip1_emb = self.text_enc_1(text_clip1_ids.to(self.device), output_hidden_states=True)
pool_clip1_emb = text_clip1_emb[0].to(dtype=self.dtype, device=self.device)
text_clip1_emb = text_clip1_emb.hidden_states[-2].to(dtype=self.dtype, device=self.device)
text_clip2_ids = self.tokenizer_2(prompt,
padding="max_length",
max_length=77,
truncation=True,
return_tensors='pt').input_ids
text_clip2_emb = self.text_enc_2(text_clip2_ids.to(self.device), output_hidden_states=True)
pool_clip2_emb = text_clip2_emb[0].to(dtype=self.dtype, device=self.device)
text_clip2_emb = text_clip2_emb.hidden_states[-2].to(dtype=self.dtype, device=self.device)
# T5 encode (used for text condition)
text_t5_ids = self.tokenizer_3(prompt,
padding="max_length",
max_length=512,
truncation=True,
add_special_tokens=True,
return_tensors='pt').input_ids
text_t5_emb = self.text_enc_3(text_t5_ids.to(self.device))[0]
text_t5_emb = text_t5_emb.to(dtype=self.dtype, device=self.device)
# Merge
clip_prompt_emb = torch.cat([text_clip1_emb, text_clip2_emb], dim=-1)
clip_prompt_emb = torch.nn.functional.pad(
clip_prompt_emb, (0, text_t5_emb.shape[-1] - clip_prompt_emb.shape[-1])
)
prompt_emb = torch.cat([clip_prompt_emb, text_t5_emb], dim=-2)
pooled_prompt_emb = torch.cat([pool_clip1_emb, pool_clip2_emb], dim=-1)
return prompt_emb, pooled_prompt_emb
def initialize_latent(self, img_size:Tuple[int], batch_size:int=1, **kwargs):
H, W = img_size
lH, lW = H//self.vae_scale_factor, W//self.vae_scale_factor
lC = self.transformer.config.in_channels
latent_shape = (batch_size, lC, lH, lW)
z = torch.randn(latent_shape, device=self.device, dtype=self.dtype)
return z
def encode(self, image: torch.Tensor) -> torch.Tensor:
z = self.vae.encode(image).latent_dist.sample()
z = (z-self.vae.config.shift_factor) * self.vae.config.scaling_factor
return z
def decode(self, z: torch.Tensor) -> torch.Tensor:
z = (z/self.vae.config.scaling_factor) + self.vae.config.shift_factor
return self.vae.decode(z, return_dict=False)[0]
class SD3Euler(StableDiffusion3Base):
def __init__(self, model_key:str='stabilityai/stable-diffusion-3-medium-diffusers', device='cuda'):
super().__init__(model_key=model_key, device=device)
def inversion(self, src_img, prompts: List[str], NFE:int, cfg_scale: float=1.0, batch_size: int=1):
# encode text prompts
prompt_emb, pooled_emb = self.encode_prompt(prompts, batch_size)
null_prompt_emb, null_pooled_emb = self.encode_prompt([""], batch_size)
# initialize latent
src_img = src_img.to(device=self.device, dtype=self.dtype)
with torch.no_grad():
z = self.encode(src_img)
z0 = z.clone()
# timesteps (default option. You can make your custom here.)
self.scheduler.set_timesteps(NFE, device=self.device)
timesteps = self.scheduler.timesteps
timesteps = torch.cat([timesteps, torch.zeros(1, device=self.device)])
timesteps = reversed(timesteps)
sigmas = timesteps / self.scheduler.config.num_train_timesteps
# Solve ODE
pbar = tqdm(timesteps[:-1], total=NFE, desc='SD3 Euler Inversion')
for i, t in enumerate(pbar):
timestep = t.expand(z.shape[0]).to(self.device)
pred_v = self.predict_vector(z, timestep, prompt_emb, pooled_emb)
if cfg_scale != 1.0:
pred_null_v = self.predict_vector(z, timestep, null_prompt_emb, null_pooled_emb)
else:
pred_null_v = 0.0
sigma = sigmas[i]
sigma_next = sigmas[i+1]
z = z + (sigma_next - sigma) * (pred_null_v + cfg_scale * (pred_v - pred_null_v))
return z
def sample(self, prompts: List[str], NFE:int, img_shape: Optional[Tuple[int]]=None, cfg_scale: float=1.0, batch_size: int = 1, latent:Optional[torch.Tensor]=None):
imgH, imgW = img_shape if img_shape is not None else (512, 512)
# encode text prompts
with torch.no_grad():
prompt_emb, pooled_emb = self.encode_prompt(prompts, batch_size)
null_prompt_emb, null_pooled_emb = self.encode_prompt([""], batch_size)
# initialize latent
if latent is None:
z = self.initialize_latent((imgH, imgW), batch_size)
else:
z = latent
# timesteps (default option. You can make your custom here.)
self.scheduler.set_timesteps(NFE, device=self.device)
timesteps = self.scheduler.timesteps
sigmas = timesteps / self.scheduler.config.num_train_timesteps
# Solve ODE
pbar = tqdm(timesteps, total=NFE, desc='SD3 Euler')
for i, t in enumerate(pbar):
timestep = t.expand(z.shape[0]).to(self.device)
pred_v = self.predict_vector(z, timestep, prompt_emb, pooled_emb)
if cfg_scale != 1.0:
pred_null_v = self.predict_vector(z, timestep, null_prompt_emb, null_pooled_emb)
else:
pred_null_v = 0.0
sigma = sigmas[i]
sigma_next = sigmas[i+1] if i+1 < NFE else 0.0
z = z + (sigma_next - sigma) * (pred_null_v + cfg_scale * (pred_v - pred_null_v))
# decode
with torch.no_grad():
img = self.decode(z)
return img
class OSEDiff_SD3_GEN(torch.nn.Module):
def __init__(self, args, base_model):
super().__init__()
self.args = args
self.model = base_model
# Add lora to transformer
print('Adding Lora to OSEDiff_SD3_GEN')
self.transformer_gen = copy.deepcopy(self.model.transformer)
self.transformer_gen.to('cuda')
# self.transformer_gen = self.transformer_gen.float()
self.transformer_gen.requires_grad_(False)
self.transformer_gen.train()
self.transformer_gen, hooks = add_mp_hook(self.transformer_gen)
self.hooks = hooks
lora_params, _ = inject_lora(self.transformer_gen, {"AdaLayerNormZero"}, r=args.lora_rank, verbose=True)
# self.lora_params = lora_params
for name, param in self.transformer_gen.named_parameters():
if "lora_" in name:
param.requires_grad = True # LoRA up/down
else:
param.requires_grad = False # everything else
# Insert LoRA into VAE
print("Adding Lora to VAE")
self.model.vae, self.lora_vae_modules_encoder = inject_lora_vae(self.model.vae, lora_rank=args.lora_rank, verbose=True)
def predict_vector(self, z, t, prompt_emb, pooled_emb):
v = self.transformer_gen(hidden_states=z,
timestep=t,
pooled_projections=pooled_emb,
encoder_hidden_states=prompt_emb,
return_dict=False)[0]
return v
def forward(self, x_src, batch=None, args=None):
z_src = self.model.encode(x_src.to(dtype=torch.float32, device=self.model.vae.device))
z_src = z_src.to(self.transformer_gen.device)
# calculate prompt_embeddings and neg_prompt_embeddings
batch_size, _, _, _ = x_src.shape
with torch.no_grad():
prompt_embeds, pooled_embeds = self.model.encode_prompt(batch["prompt"], batch_size)
neg_prompt_embeds, neg_pooled_embeds = self.model.encode_prompt(batch["neg_prompt"], batch_size)
NFE = 1
self.model.scheduler.set_timesteps(NFE, device=self.model.device)
timesteps = self.model.scheduler.timesteps
sigmas = timesteps / self.model.scheduler.config.num_train_timesteps
sigmas = sigmas.to(self.transformer_gen.device)
# Solve ODE
i = 0
t = timesteps[0]
timestep = t.expand(z_src.shape[0]).to(self.transformer_gen.device)
prompt_embeds = prompt_embeds.to(self.transformer_gen.device, dtype=torch.float32)
pooled_embeds = pooled_embeds.to(self.transformer_gen.device, dtype=torch.float32)
pred_v = self.predict_vector(z_src, timestep, prompt_embeds, pooled_embeds)
pred_null_v = 0.0
sigma = sigmas[i]
sigma_next = sigmas[i+1] if i+1 < NFE else 0.0
z_src = z_src + (sigma_next - sigma) * (pred_null_v + 1 * (pred_v - pred_null_v))
output_image = self.model.decode(z_src.to(dtype=torch.float32, device=self.model.vae.device))
return output_image, z_src, prompt_embeds, pooled_embeds
class OSEDiff_SD3_REG(torch.nn.Module):
def __init__(self, args, base_model):
super().__init__()
self.args = args
self.model = base_model
self.transformer_org = self.model.transformer
# Add lora to transformer
print('Adding Lora to OSEDiff_SD3_REG')
self.transformer_reg = copy.deepcopy(self.transformer_org)
self.transformer_reg.to('cuda')
self.transformer_reg.requires_grad_(False)
self.transformer_reg.train()
self.transformer_reg, hooks = add_mp_hook(self.transformer_reg)
self.hooks = hooks
lora_params, _ = inject_lora(self.transformer_reg, {"AdaLayerNormZero"}, r=args.lora_rank, verbose=True)
for name, param in self.transformer_reg.named_parameters():
if "lora_" in name:
param.requires_grad = True # LoRA up/down
else:
param.requires_grad = False # everything else
def predict_vector_reg(self, z, t, prompt_emb, pooled_emb):
v = self.transformer_reg(hidden_states=z,
timestep=t,
pooled_projections=pooled_emb,
encoder_hidden_states=prompt_emb,
return_dict=False)[0]
return v
def predict_vector_org(self, z, t, prompt_emb, pooled_emb):
v = self.transformer_org(hidden_states=z,
timestep=t,
pooled_projections=pooled_emb,
encoder_hidden_states=prompt_emb,
return_dict=False)[0]
return v
def distribution_matching_loss(self, z0, prompt_embeds, pooled_embeds, global_step, args):
with torch.no_grad():
device = self.transformer_reg.device
# get timesteps and sigma
u = compute_density_for_timestep_sampling(
weighting_scheme="uniform",
batch_size=1,
logit_mean=0.0,
logit_std=1.0,
mode_scale=1.29,
)
t_idx = (u*1000).long().to(device)
self.model.scheduler.set_timesteps(1000, device=device)
times = self.model.scheduler.timesteps
t = times[t_idx]
sigma = t / 1000
# get noise and xt
z0 = z0.to(device)
noise = torch.randn_like(z0)
sigma = sigma.half()
zt = (1-sigma) * z0 + sigma * noise
# Get x0_prediction of transformer_reg
v_pred_reg = self.predict_vector_reg(zt, t, prompt_embeds.to(device), pooled_embeds.to(device))
reg_model_pred = v_pred_reg * (-sigma) + zt # this is x0_prediction for reg
# Get x0_prediction of transformer_org
org_device = self.transformer_org.device
v_pred_org = self.predict_vector_org(zt.to(org_device), t.to(org_device), prompt_embeds.to(org_device), pooled_embeds.to(org_device))
org_model_pred = v_pred_org * (-sigma.to(org_device)) + zt.to(org_device) # this is x0_prediction for org
# Visualization
if global_step % 100 == 1:
self.vsd_visualization(z0, noise, zt, reg_model_pred, org_model_pred, global_step, args)
weighting_factor = torch.abs(z0 - org_model_pred.to(device)).mean(dim=[1, 2, 3], keepdim=True)
grad = (reg_model_pred - org_model_pred.to(device)) / weighting_factor
loss = F.mse_loss(z0, (z0 - grad).detach())
return loss
def vsd_visualization(self, z0, noise, zt, reg_model_pred, org_model_pred, global_step, args):
#-------- Visualization --------#
# 1. Visualize latents, noise, zt
z0_img = self.model.decode(z0.to(dtype=torch.float32, device=self.model.vae.device))
ns_img = self.model.decode(noise.to(dtype=torch.float32, device=self.model.vae.device))
zt_img = self.model.decode(zt.to(dtype=torch.float32, device=self.model.vae.device))
z0_img_pil = transforms.ToPILImage()(torch.clamp(z0_img[0].cpu(), -1.0, 1.0) * 0.5 + 0.5)
ns_img_pil = transforms.ToPILImage()(torch.clamp(ns_img[0].cpu(), -1.0, 1.0) * 0.5 + 0.5)
zt_img_pil = transforms.ToPILImage()(torch.clamp(zt_img[0].cpu(), -1.0, 1.0) * 0.5 + 0.5)
# 2. Visualize reg_img, org_img
reg_img = self.model.decode(reg_model_pred.to(dtype=torch.float32, device=self.model.vae.device))
org_img = self.model.decode(org_model_pred.to(dtype=torch.float32, device=self.model.vae.device))
reg_img_pil = transforms.ToPILImage()(torch.clamp(reg_img[0].cpu(), -1.0, 1.0) * 0.5 + 0.5)
org_img_pil = transforms.ToPILImage()(torch.clamp(org_img[0].cpu(), -1.0, 1.0) * 0.5 + 0.5)
# Concatenate images side by side
w, h = z0_img_pil.width, z0_img_pil.height
combined_image = Image.new('RGB', (w*5, h))
combined_image.paste(z0_img_pil, (0, 0))
combined_image.paste(ns_img_pil, (w, 0))
combined_image.paste(zt_img_pil, (w*2, 0))
combined_image.paste(reg_img_pil, (w*3, 0))
combined_image.paste(org_img_pil, (w*4, 0))
combined_image.save(os.path.join(args.output_dir, f'visualization/vsd/{global_step}.png'))
#-------- Visualization --------#
def diff_loss(self, z0, prompt_embeds, pooled_embeds, net_lpips, args):
device = self.transformer_reg.device
u = compute_density_for_timestep_sampling(
weighting_scheme="uniform",
batch_size=1,
logit_mean=0.0,
logit_std=1.0,
mode_scale=1.29,
)
t_idx = (u*1000).long().to(device)
self.model.scheduler.set_timesteps(1000, device=device)
times = self.model.scheduler.timesteps
t = times[t_idx]
sigma = t / 1000
z0 = z0.to(device)
z0, prompt_embeds = z0.detach(), prompt_embeds.detach()
noise = torch.randn_like(z0)
sigma = sigma.half()
zt = (1-sigma) * z0 + sigma * noise # noisy latents
# v-prediction
v_pred = self.predict_vector_reg(zt, t, prompt_embeds.to(device), pooled_embeds.to(device))
model_pred = v_pred * (-sigma) + zt
target = z0
loss_weight = compute_loss_weighting_for_sd3("logit_normal", sigma)
diffusion_loss = loss_weight.float() * F.mse_loss(model_pred.float(), target.float())
loss_d = diffusion_loss
return loss_d.mean()
class OSEDiff_SD3_TEST(torch.nn.Module):
def __init__(self, args, base_model):
super().__init__()
self.args = args
self.model = base_model
self.lora_path = args.lora_path
self.vae_path = args.vae_path
# Add lora to transformer
print(f'Loading LoRA to Transformer from {self.lora_path}')
self.model.transformer.requires_grad_(False)
lora_params, _ = inject_lora(self.model.transformer, {"AdaLayerNormZero"}, loras=self.lora_path, r=args.lora_rank, verbose=False)
for name, param in self.model.transformer.named_parameters():
param.requires_grad = False
# Insert LoRA into VAE
print(f"Loading LoRA to VAE from {self.vae_path}")
self.model.vae, self.lora_vae_modules_encoder = inject_lora_vae(self.model.vae, lora_rank=args.lora_rank, verbose=False)
encoder_state_dict_fp16 = torch.load(self.vae_path, map_location="cpu")
self.model.vae.encoder.load_state_dict(encoder_state_dict_fp16)
def predict_vector(self, z, t, prompt_emb, pooled_emb):
v = self.model.transformer(hidden_states=z,
timestep=t,
pooled_projections=pooled_emb,
encoder_hidden_states=prompt_emb,
return_dict=False)[0]
return v
@torch.no_grad()
def forward(self, x_src, prompt):
z_src = self.model.vae.encode(x_src.to(dtype=torch.float32, device=self.model.vae.device)).latent_dist.sample() * self.model.vae.config.scaling_factor
z_src = z_src.to(self.model.transformer.device)
# calculate prompt_embeddings and neg_prompt_embeddings
batch_size, _, _, _ = x_src.shape
with torch.no_grad():
prompt_embeds, pooled_embeds = self.model.encode_prompt([prompt], batch_size)
self.model.scheduler.set_timesteps(1, device=self.model.device)
timesteps = self.model.scheduler.timesteps
# Solve ODE
t = timesteps[0]
timestep = t.expand(z_src.shape[0]).to(self.model.transformer.device)
prompt_embeds = prompt_embeds.to(self.model.transformer.device, dtype=torch.float32)
pooled_embeds = pooled_embeds.to(self.model.transformer.device, dtype=torch.float32)
pred_v = self.predict_vector(z_src, timestep, prompt_embeds, pooled_embeds)
z_src = z_src - pred_v
with torch.no_grad():
output_image = self.model.decode(z_src.to(dtype=torch.float32, device=self.model.vae.device))
return output_image
class OSEDiff_SD3_TEST_efficient(torch.nn.Module):
def __init__(self, args, base_model):
super().__init__()
self.args = args
self.model = base_model
self.lora_path = args.lora_path
self.vae_path = args.vae_path
# Add lora to transformer
print(f'Loading LoRA to Transformer from {self.lora_path}')
self.model.transformer.requires_grad_(False)
lora_params, _ = inject_lora(self.model.transformer, {"AdaLayerNormZero"}, loras=self.lora_path, r=args.lora_rank, verbose=False)
for name, param in self.model.transformer.named_parameters():
param.requires_grad = False
# Insert LoRA into VAE
print(f"Loading LoRA to VAE from {self.vae_path}")
self.model.vae, self.lora_vae_modules_encoder = inject_lora_vae(self.model.vae, lora_rank=args.lora_rank, verbose=False)
encoder_state_dict_fp16 = torch.load(self.vae_path, map_location="cpu")
self.model.vae.encoder.load_state_dict(encoder_state_dict_fp16)
def predict_vector(self, z, t, prompt_emb, pooled_emb):
v = self.model.transformer(hidden_states=z,
timestep=t,
pooled_projections=pooled_emb,
encoder_hidden_states=prompt_emb,
return_dict=False)[0]
return v
@torch.no_grad()
def forward(self, x_src, prompt):
z_src = self.model.vae.encode(x_src.to(dtype=torch.float32, device=self.model.vae.device)).latent_dist.sample() * self.model.vae.config.scaling_factor
z_src = z_src.to(self.model.transformer.device)
# calculate prompt_embeddings
batch_size, _, _, _ = x_src.shape
prompt_embeds, pooled_embeds = self.model.encode_prompt([prompt], batch_size)
self.model.scheduler.set_timesteps(1, device=self.model.device)
timesteps = self.model.scheduler.timesteps
# Solve ODE
t = timesteps[0]
timestep = t.expand(z_src.shape[0]).to(self.model.transformer.device)
prompt_embeds = prompt_embeds.to(self.model.transformer.device, dtype=torch.float32)
pooled_embeds = pooled_embeds.to(self.model.transformer.device, dtype=torch.float32)
pred_v = self.predict_vector(z_src, timestep, prompt_embeds, pooled_embeds)
z_src = z_src - pred_v
output_image = self.model.decode(z_src.to(dtype=torch.float32, device=self.model.vae.device))
return output_image
|