Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -3,9 +3,11 @@ import subprocess
|
|
3 |
import os
|
4 |
import shutil
|
5 |
from pathlib import Path
|
|
|
6 |
from PIL import Image, ImageDraw
|
7 |
import spaces
|
8 |
|
|
|
9 |
# ------------------------------------------------------------------
|
10 |
# CONFIGURE THESE PATHS TO MATCH YOUR PROJECT STRUCTURE
|
11 |
# ------------------------------------------------------------------
|
@@ -85,102 +87,13 @@ def make_preview_with_boxes(image_path: str, scale_option: str) -> Image.Image:
|
|
85 |
return base
|
86 |
|
87 |
|
88 |
-
# ------------------------------------------------------------------
|
89 |
-
# HELPER FUNCTIONS FOR INFERENCE & CAPTION (unchanged from your original)
|
90 |
-
# ------------------------------------------------------------------
|
91 |
@spaces.GPU(duration=120)
|
92 |
def run_with_upload(uploaded_image_path, upscale_option):
|
93 |
-
"""
|
94 |
-
1) Clear INPUT_DIR
|
95 |
-
2) Save the uploaded file as input.png in INPUT_DIR
|
96 |
-
3) Read `upscale_option` (e.g. "1x", "2x", "4x") β turn it into "1","2","4"
|
97 |
-
4) Call inference_coz.py with `--upscale <that_value>`
|
98 |
-
5) Return the FOUR outputβPNG fileβpaths as a Python list, so that Gradio's Gallery
|
99 |
-
can display them.
|
100 |
-
"""
|
101 |
-
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
102 |
-
# (Copyβpaste exactly your existing code here; no changes needed)
|
103 |
-
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
104 |
-
|
105 |
-
os.makedirs(INPUT_DIR, exist_ok=True)
|
106 |
-
for fn in os.listdir(INPUT_DIR):
|
107 |
-
full_path = os.path.join(INPUT_DIR, fn)
|
108 |
-
try:
|
109 |
-
if os.path.isfile(full_path) or os.path.islink(full_path):
|
110 |
-
os.remove(full_path)
|
111 |
-
elif os.path.isdir(full_path):
|
112 |
-
shutil.rmtree(full_path)
|
113 |
-
except Exception as e:
|
114 |
-
print(f"Warning: could not delete {full_path}: {e}")
|
115 |
-
|
116 |
-
if uploaded_image_path is None:
|
117 |
-
return []
|
118 |
-
try:
|
119 |
-
pil_img = Image.open(uploaded_image_path).convert("RGB")
|
120 |
-
except Exception as e:
|
121 |
-
print(f"Error: could not open uploaded image: {e}")
|
122 |
-
return []
|
123 |
-
save_path = Path(INPUT_DIR) / "input.png"
|
124 |
-
try:
|
125 |
-
pil_img.save(save_path, format="PNG")
|
126 |
-
except Exception as e:
|
127 |
-
print(f"Error: could not save as PNG: {e}")
|
128 |
-
return []
|
129 |
-
|
130 |
-
upscale_value = upscale_option.replace("x", "") # e.g. "2x" β "2"
|
131 |
-
cmd = [
|
132 |
-
"python", "inference_coz.py",
|
133 |
-
"-i", INPUT_DIR,
|
134 |
-
"-o", OUTPUT_DIR,
|
135 |
-
"--rec_type", "recursive_multiscale",
|
136 |
-
"--prompt_type", "vlm",
|
137 |
-
"--upscale", upscale_value,
|
138 |
-
"--lora_path", "ckpt/SR_LoRA/model_20001.pkl",
|
139 |
-
"--vae_path", "ckpt/SR_VAE/vae_encoder_20001.pt",
|
140 |
-
"--pretrained_model_name_or_path", "stabilityai/stable-diffusion-3-medium-diffusers",
|
141 |
-
"--ram_ft_path", "ckpt/DAPE/DAPE.pth",
|
142 |
-
"--ram_path", "ckpt/RAM/ram_swin_large_14m.pth"
|
143 |
-
]
|
144 |
-
try:
|
145 |
-
subprocess.run(cmd, check=True)
|
146 |
-
except subprocess.CalledProcessError as err:
|
147 |
-
print("Inference failed:", err)
|
148 |
-
return []
|
149 |
-
|
150 |
-
per_sample_dir = os.path.join(OUTPUT_DIR, "per-sample", "input")
|
151 |
-
expected_files = [
|
152 |
-
os.path.join(per_sample_dir, f"{i}.png")
|
153 |
-
for i in range(1, 5)
|
154 |
-
]
|
155 |
-
for fp in expected_files:
|
156 |
-
if not os.path.isfile(fp):
|
157 |
-
print(f"Warning: expected file not found: {fp}")
|
158 |
-
return []
|
159 |
-
return expected_files
|
160 |
-
|
161 |
-
|
162 |
-
def get_caption(src_gallery, evt: gr.SelectData):
|
163 |
-
"""
|
164 |
-
Given a clickedβon image in the gallery, read the corresponding .txt in
|
165 |
-
.../per-sample/input/txt and return its contents.
|
166 |
-
"""
|
167 |
-
if not src_gallery or not os.path.isfile(src_gallery[evt.index][0]):
|
168 |
-
return "No caption available."
|
169 |
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
txt_folder = os.path.join(OUTPUT_DIR, "per-sample", "input", "txt")
|
174 |
-
txt_path = os.path.join(txt_folder, f"{int(stem) - 1}.txt")
|
175 |
|
176 |
-
if not os.path.isfile(txt_path):
|
177 |
-
return f"Caption file not found: {int(stem) - 1}.txt"
|
178 |
-
try:
|
179 |
-
with open(txt_path, "r", encoding="utf-8") as f:
|
180 |
-
caption = f.read().strip()
|
181 |
-
return caption if caption else "(Caption file is empty.)"
|
182 |
-
except Exception as e:
|
183 |
-
return f"Error reading caption: {e}"
|
184 |
|
185 |
|
186 |
# ------------------------------------------------------------------
|
@@ -248,13 +161,6 @@ with gr.Blocks(css=css) as demo:
|
|
248 |
columns=[2], rows=[2]
|
249 |
)
|
250 |
|
251 |
-
# 6) Textbox under the gallery for showing captions
|
252 |
-
caption_text = gr.Textbox(
|
253 |
-
label="Caption",
|
254 |
-
lines=4,
|
255 |
-
placeholder="Click on any image above to see its caption here."
|
256 |
-
)
|
257 |
-
|
258 |
# ------------------------------------------------------------------
|
259 |
# CALLBACK #1: Whenever the user uploads or changes the radio, update preview
|
260 |
# ------------------------------------------------------------------
|
@@ -292,23 +198,10 @@ with gr.Blocks(css=css) as demo:
|
|
292 |
outputs=[output_gallery]
|
293 |
)
|
294 |
|
295 |
-
# ------------------------------------------------------------------
|
296 |
-
# CALLBACK #3: When an image in the gallery is clicked, show its caption
|
297 |
-
# ------------------------------------------------------------------
|
298 |
-
|
299 |
-
output_gallery.select(
|
300 |
-
fn=get_caption,
|
301 |
-
inputs=[output_gallery],
|
302 |
-
outputs=[caption_text]
|
303 |
-
)
|
304 |
|
305 |
# ------------------------------------------------------------------
|
306 |
# START THE GRADIO SERVER
|
307 |
# ------------------------------------------------------------------
|
308 |
|
309 |
-
# π§ 1) turn the global queue ON and set its default_concurrency_limit to 1
|
310 |
-
demo.queue(default_concurrency_limit=1, # β€ 1 worker per event
|
311 |
-
max_size=20) # optional: allow 20 waiting jobs
|
312 |
-
|
313 |
# π§ 2) launch as usual
|
314 |
demo.launch(share=True)
|
|
|
3 |
import os
|
4 |
import shutil
|
5 |
from pathlib import Path
|
6 |
+
from inference_coz_single import recursive_multiscale_sr
|
7 |
from PIL import Image, ImageDraw
|
8 |
import spaces
|
9 |
|
10 |
+
|
11 |
# ------------------------------------------------------------------
|
12 |
# CONFIGURE THESE PATHS TO MATCH YOUR PROJECT STRUCTURE
|
13 |
# ------------------------------------------------------------------
|
|
|
87 |
return base
|
88 |
|
89 |
|
|
|
|
|
|
|
90 |
@spaces.GPU(duration=120)
|
91 |
def run_with_upload(uploaded_image_path, upscale_option):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
+
upscale_value = upscale_option.replace("x", "") # e.g. "2x" β "2"
|
94 |
+
|
95 |
+
return recursive_multiscale_sr(uploaded_image_path, int(upscale_value))[0]
|
|
|
|
|
96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
|
99 |
# ------------------------------------------------------------------
|
|
|
161 |
columns=[2], rows=[2]
|
162 |
)
|
163 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
164 |
# ------------------------------------------------------------------
|
165 |
# CALLBACK #1: Whenever the user uploads or changes the radio, update preview
|
166 |
# ------------------------------------------------------------------
|
|
|
198 |
outputs=[output_gallery]
|
199 |
)
|
200 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
201 |
|
202 |
# ------------------------------------------------------------------
|
203 |
# START THE GRADIO SERVER
|
204 |
# ------------------------------------------------------------------
|
205 |
|
|
|
|
|
|
|
|
|
206 |
# π§ 2) launch as usual
|
207 |
demo.launch(share=True)
|