File size: 8,321 Bytes
4479f79 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from copy import deepcopy
from collections import defaultdict
import numpy as np
import pandas as pd
import os
class MPLUG(torch.nn.Module):
def __init__(self, ckpt='damo/mplug_visual-question-answering_coco_large_en', device='gpu'):
super().__init__()
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
self.pipeline_vqa = pipeline(Tasks.visual_question_answering, model=ckpt, device=device)
def vqa(self, image, question):
input_vqa = {'image': image, 'question': question}
result = self.pipeline_vqa(input_vqa)
return result['text']
class DPGScore:
def __init__(self, device):
self.device = device
ckpt = os.getenv('DPG_VQA_MODEL_PATH', "xingjianleng/mplug_visual-question-answering_coco_large_en")
self.vqa_model = MPLUG(ckpt, device=self.device)
def __call__(self, image, q_dict):
VQA = self.vqa_model
qid2tuple, qid2dependency, qid2question = q_dict['qid2tuple'], q_dict['qid2dependency'], q_dict['qid2question']
qid2answer = {}
qid2scores = {}
for id, question in qid2question.items():
id = str(id)
answer = VQA.vqa(image, question)
qid2answer[id] = answer
qid2scores[id] = float(answer == 'yes')
average_score_without_dep = sum(qid2scores.values()) / len(qid2scores)
qid2validity = {}
qid2scores_after_filtering = deepcopy(qid2scores)
for id, parent_ids in qid2dependency.items():
id = str(id)
any_parent_answered_no = False
for parent_id in parent_ids:
parent_id = str(parent_id)
if int(parent_id) == 0:
continue
if parent_id in qid2scores:
if qid2scores[parent_id] == 0:
any_parent_answered_no = True
break
if any_parent_answered_no:
qid2scores_after_filtering[id] = 0.0
qid2validity[id] = False
else:
qid2validity[id] = True
average_score_with_dep = sum(qid2scores_after_filtering.values()) / len(qid2scores)
return {
'qid2tuple': qid2tuple,
'qid2dependency': qid2dependency,
'qid2question': qid2question,
'qid2answer': qid2answer,
'qid2scores': qid2scores,
'qid2validity': qid2validity,
'average_score_with_dependency': average_score_with_dep * 100.,
'average_score_without_dependency': average_score_without_dep * 100.
}
def prepare_dpg_data(csv_path):
previous_id = ''
current_id = ''
question_dict = dict()
category_count = defaultdict(int)
data = pd.read_csv(csv_path)
for i, line in data.iterrows():
if i == 0:
continue
current_id = line.item_id
qid = str(line.proposition_id)
dependency_list_str = line.dependency.split(',')
dependency_list_int = []
for d in dependency_list_str:
d_int = str(d.strip())
dependency_list_int.append(d_int)
if current_id == previous_id:
question_dict[current_id]['qid2tuple'][qid] = line.tuple
question_dict[current_id]['qid2dependency'][qid] = dependency_list_int
question_dict[current_id]['qid2question'][qid] = line.question_natural_language
else:
question_dict[current_id] = dict(
qid2tuple={qid: line.tuple},
qid2dependency={qid: dependency_list_int},
qid2question={qid: line.question_natural_language})
category = line.question_natural_language.split('(')[0].strip()
category_count[category] += 1
previous_id = current_id
return question_dict
if __name__ == "__main__":
import os
import time
import shutil
import argparse
from PIL import Image
from tqdm import tqdm
from src.train.data.data_utils import split_grid, json_load, json_dump
from src.train.train_utils import get_train_config, get_rank_and_worldsize
from src.train.data.validation import *
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--image_dir", type=str, default="")
args = parser.parse_args()
return args
args = parse_args()
local_rank, global_rank, world_size = get_rank_and_worldsize()
print(f"local_rank={local_rank}, global_rank={global_rank}, world_size={world_size}")
is_local_main_process = local_rank == 0
is_main_process = global_rank == 0
images = sorted(glob(f"{args.image_dir}/*.png"))
if world_size > 1:
num_per_rank = round(len(images) / world_size)
images = images[global_rank*num_per_rank:(global_rank+1)*num_per_rank]
os.environ['CUDA_VISIBLE_DEVICES'] = str(local_rank % 8)
print(f"[rank {global_rank}/{world_size}] has {len(images)} prompts to process, using device {torch.cuda.current_device()}")
run_name = time.strftime("%Y%m%d-%H")
temp_dir = os.path.join(args.image_dir, f"eval_temp_{run_name}")
if global_rank == 0:
if os.path.exists(temp_dir):
shutil.rmtree(temp_dir)
os.makedirs(temp_dir)
dpg_score_model = DPGScore("cuda")
q_dicts = prepare_dpg_data(f"eval/dpg/dpg_bench.csv")
rank_json = {}
with torch.no_grad():
for image_path in tqdm(images):
prompt_name = os.path.splitext(os.path.basename(image_path))[0]
q_dict = q_dicts[prompt_name]
images = split_grid(Image.open(image_path))
rank_json[prompt_name] = []
for i, img in enumerate(images):
rank_json[prompt_name].append({})
result = dpg_score_model(img, q_dict)
for q_id, question in result["qid2question"].items():
answer = result["qid2answer"][q_id]
rank_json[prompt_name][i][question] = answer
rank_json[prompt_name][i]['average_score_with_dependency'] = result['average_score_with_dependency']
rank_json[prompt_name][i]['average_score_without_dependency'] = result['average_score_without_dependency']
rank_save_path = os.path.join(temp_dir, f"scores_{global_rank}.json")
json_dump(rank_json, rank_save_path, "utf-8")
if global_rank == 0:
while len(glob(os.path.join(temp_dir, f"scores_*.json"))) < world_size:
time.sleep(5)
time.sleep(5) # wait for the file writting to be finished
merged_json = {}
prompt_scores = {}
scores = []
for rank_path in glob(os.path.join(temp_dir, f"scores_*.json")):
rank_json = json_load(rank_path, "utf-8")
merged_json.update(rank_json)
for prompt_name in rank_json:
score_list = [x['average_score_with_dependency'] for x in rank_json[prompt_name]]
prompt_scores[prompt_name] = np.mean(score_list)
scores += score_list
json_dump(merged_json, os.path.join(args.image_dir, f"dpg_scores_{run_name}.json"), "utf-8")
dpg_score = np.mean(scores)
lines_to_write = [
f"DPG Score: {dpg_score:.2f}\n"
]
print(lines_to_write[0])
for prompt_name, score in prompt_scores.items():
lines_to_write.append(f"{prompt_name}: {score:.2f}\n")
with open(os.path.join(args.image_dir, f"dpg_scores_{run_name}.txt"), "w") as f:
f.writelines(lines_to_write)
shutil.rmtree(temp_dir) |