File size: 24,735 Bytes
4479f79 41cddf4 56cc2e6 4479f79 7c1b432 4479f79 9cecb83 2014baf c4b9ec5 ba1b0fc cebd833 42876b6 f7eba29 d8a55e1 0531f47 1bff0d5 3a961d2 1bff0d5 0531f47 1bff0d5 3a961d2 1bff0d5 3a961d2 1bff0d5 3a961d2 1bff0d5 3a961d2 1bff0d5 3a961d2 1bff0d5 3a961d2 1bff0d5 57d3986 3a961d2 4d45213 3a961d2 0531f47 3a961d2 cebd833 c71a46c cebd833 1e5785a cebd833 a874f06 cebd833 1924d17 8bd5eb5 1924d17 3a961d2 cebd833 4479f79 586bceb 4479f79 586bceb 4479f79 56cc2e6 4479f79 c71a46c 4479f79 45b2b49 56cc2e6 4479f79 52369c9 055f941 c4b9ec5 b94e3a2 c4b9ec5 4479f79 c4b9ec5 cebd833 52369c9 cebd833 4479f79 cebd833 4479f79 cebd833 1e5785a aea9fe9 02767ba 1e5785a cebd833 4479f79 cebd833 4479f79 cebd833 02767ba cebd833 4479f79 cebd833 4479f79 02767ba cebd833 4479f79 cebd833 4479f79 cebd833 c71a46c cebd833 c71a46c cebd833 4479f79 c71a46c 2f7b580 8bd5eb5 2f7b580 c71a46c 2f7b580 2be87ad 2f7b580 c71a46c 2f7b580 c71a46c 2f7b580 c71a46c 2f7b580 c71a46c 2f7b580 4479f79 8bd5eb5 cf9c218 b94e3a2 922ce8c b94e3a2 b4df1ce 8bd5eb5 c4b9ec5 8bd5eb5 4479f79 c71a46c 4479f79 c71a46c 4479f79 c71a46c 4479f79 c71a46c 4479f79 c71a46c 4479f79 c71a46c 4479f79 c71a46c 4479f79 c71a46c d8a55e1 cf4c367 b4df1ce cf4c367 2399b6c 0dbaecc cf4c367 c71a46c cf4c367 c9f3dc1 cf4c367 2399b6c cf4c367 8bd5eb5 cf4c367 b4df1ce cf4c367 922ce8c 8bd5eb5 2399b6c cf4c367 2399b6c cf4c367 2399b6c cf4c367 2399b6c cf4c367 2399b6c cf4c367 75c21f5 c4b9ec5 b94e3a2 c4b9ec5 b94e3a2 055f941 c4b9ec5 5a15484 055f941 a963e51 c4b9ec5 055f941 c4b9ec5 45b2b49 75c21f5 2399b6c 52369c9 055f941 52369c9 c71a46c 2399b6c 2f7b580 c71a46c 2f7b580 2023cb8 d8a55e1 42876b6 2910919 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 |
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
# Copyright 2024 Black Forest Labs and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import spaces
import tempfile
from PIL import Image
import gradio as gr
import string
import random, time, math
import os
import uuid
import src.flux.generate
from src.flux.generate import generate_from_test_sample, seed_everything
from src.flux.pipeline_tools import CustomFluxPipeline, load_modulation_adapter, load_dit_lora
from src.utils.data_utils import get_train_config, image_grid, pil2tensor, json_dump, pad_to_square, cv2pil, merge_bboxes
from eval.tools.face_id import FaceID
from eval.tools.florence_sam import ObjectDetector
import shutil
import yaml
import numpy as np
from huggingface_hub import snapshot_download, hf_hub_download
import torch
os.environ["XVERSE_PREPROCESSED_DATA"] = f"{os.getcwd()}/proprocess_data"
# FLUX.1-schnell
snapshot_download(
repo_id="black-forest-labs/FLUX.1-schnell",
local_dir="./checkpoints/FLUX.1-schnell",
local_dir_use_symlinks=False
)
# Florence-2-large
snapshot_download(
repo_id="microsoft/Florence-2-large",
local_dir="./checkpoints/Florence-2-large",
local_dir_use_symlinks=False
)
# CLIP ViT Large
snapshot_download(
repo_id="openai/clip-vit-large-patch14",
local_dir="./checkpoints/clip-vit-large-patch14",
local_dir_use_symlinks=False
)
# DINO ViT-s16
snapshot_download(
repo_id="facebook/dino-vits16",
local_dir="./checkpoints/dino-vits16",
local_dir_use_symlinks=False
)
# mPLUG Visual Question Answering
snapshot_download(
repo_id="xingjianleng/mplug_visual-question-answering_coco_large_en",
local_dir="./checkpoints/mplug_visual-question-answering_coco_large_en",
local_dir_use_symlinks=False
)
# XVerse
snapshot_download(
repo_id="ByteDance/XVerse",
local_dir="./checkpoints/XVerse",
local_dir_use_symlinks=False
)
hf_hub_download(
repo_id="facebook/sam2.1-hiera-large",
local_dir="./checkpoints/",
filename="sam2.1_hiera_large.pt",
)
os.environ["FLORENCE2_MODEL_PATH"] = "./checkpoints/Florence-2-large"
os.environ["SAM2_MODEL_PATH"] = "./checkpoints/sam2.1_hiera_large.pt"
os.environ["FACE_ID_MODEL_PATH"] = "./checkpoints/model_ir_se50.pth"
os.environ["CLIP_MODEL_PATH"] = "./checkpoints/clip-vit-large-patch14"
os.environ["FLUX_MODEL_PATH"] = "./checkpoints/FLUX.1-schnell"
os.environ["DPG_VQA_MODEL_PATH"] = "./checkpoints/mplug_visual-question-answering_coco_large_en"
os.environ["DINO_MODEL_PATH"] = "./checkpoints/dino-vits16"
dtype = torch.bfloat16
device = "cuda"
config_path = "train/config/XVerse_config_demo.yaml"
config = config_train = get_train_config(config_path)
# config["model"]["dit_quant"] = "int8-quanto"
config["model"]["use_dit_lora"] = False
model = CustomFluxPipeline(
config, device, torch_dtype=dtype,
)
model.pipe.set_progress_bar_config(leave=False)
face_model = FaceID(device)
detector = ObjectDetector(device)
config = get_train_config(config_path)
model.config = config
run_mode = "mod_only"
store_attn_map = False
run_name = time.strftime("%m%d-%H%M")
num_inputs = 2
images = []
captions = []
face_btns = []
det_btns = []
vlm_btns = []
idip_checkboxes = []
ckpt_root = "./checkpoints/XVerse"
model.clear_modulation_adapters()
model.pipe.unload_lora_weights()
if not os.path.exists(ckpt_root):
print("Checkpoint root does not exist.")
modulation_adapter = load_modulation_adapter(model, config, dtype, device, f"{ckpt_root}/modulation_adapter", is_training=False)
model.add_modulation_adapter(modulation_adapter)
if config["model"]["use_dit_lora"]:
load_dit_lora(model, model.pipe, config, dtype, device, f"{ckpt_root}", is_training=False)
vae_skip_iter = None
attn_skip_iter = 0
def clear_images():
return [None, ]*num_inputs
@spaces.GPU()
def det_seg_img(image, label):
if isinstance(image, str):
image = Image.open(image).convert("RGB")
instance_result_dict = detector.get_multiple_instances(image, label, min_size=image.size[0]//20)
indices = list(range(len(instance_result_dict["instance_images"])))
ins, bbox = merge_instances(image, indices, instance_result_dict["instance_bboxes"], instance_result_dict["instance_images"])
return ins
@spaces.GPU()
def crop_face_img(image):
if isinstance(image, str):
image = Image.open(image).convert("RGB")
image = pad_to_square(image).resize((2048, 2048))
face_bbox = face_model.detect(
(pil2tensor(image).unsqueeze(0) * 255).to(torch.uint8).to(device), 1.4
)[0]
face = image.crop(face_bbox)
return face
@spaces.GPU()
def vlm_img_caption(image):
if isinstance(image, str):
image = Image.open(image).convert("RGB")
try:
caption = detector.detector.caption(image, "<CAPTION>").strip()
if caption.endswith("."):
caption = caption[:-1]
except Exception as e:
print(e)
caption = ""
caption = caption.lower()
return caption
def generate_random_string(length=4):
letters = string.ascii_letters
result_str = ''.join(random.choice(letters) for i in range(length))
return result_str
def resize_keep_aspect_ratio(pil_image, target_size=1024):
H, W = pil_image.height, pil_image.width
target_area = target_size * target_size
current_area = H * W
scaling_factor = (target_area / current_area) ** 0.5 # sqrt(target_area / current_area)
new_H = int(round(H * scaling_factor))
new_W = int(round(W * scaling_factor))
return pil_image.resize((new_W, new_H))
@spaces.GPU()
def generate_image(
prompt,
image_1, caption_1,
image_2, caption_2,
use_id_1 = True,
use_id_2 = True,
cond_size = 256,
target_height = 768,
target_width = 768,
seed = 42,
vae_skip_iter = "0-0.05:1,0.8-1:1",
control_weight_lambda = "0-1:1/3.5/5",
double_attention = False,
single_attention = True,
ip_scale = "0-1:0.85",
latent_sblora_scale_str = "0-1:0.85",
vae_lora_scale = "0-1:1.3",
session_id = None,
):
if session_id is None:
session_id = uuid.uuid4().hex
torch.cuda.empty_cache()
num_images = 1
images = [image_1, image_2]
captions = [caption_1, caption_2]
idips_checkboxes = [use_id_1, use_id_2]
print(f"Length of images: {len(images)}")
print(f"Length of captions: {len(captions)}")
print(f"Control weight lambda: {control_weight_lambda}")
if control_weight_lambda != "no":
parts = control_weight_lambda.split(',')
new_parts = []
for part in parts:
if ':' in part:
left, right = part.split(':')
values = right.split('/')
global_value = values[0]
id_value = values[1]
ip_value = values[2]
new_values = [global_value]
for is_id in idips_checkboxes:
if is_id:
new_values.append(id_value)
else:
new_values.append(ip_value)
new_part = f"{left}:{('/'.join(new_values))}"
new_parts.append(new_part)
else:
new_parts.append(part)
control_weight_lambda = ','.join(new_parts)
print(f"Control weight lambda: {control_weight_lambda}")
src_inputs = []
use_words = []
cur_run_time = time.strftime("%m%d-%H%M%S")
processed_directory = os.environ["XVERSE_PREPROCESSED_DATA"]
tmp_dir_root = f'{processed_directory}'
temp_dir = f"{tmp_dir_root}/{session_id}/{cur_run_time}_{generate_random_string(4)}"
os.makedirs(temp_dir, exist_ok=True)
print(f"Temporary directory created: {temp_dir}")
for i, (image_path, caption) in enumerate(zip(images, captions)):
if image_path:
if caption.startswith("a ") or caption.startswith("A "):
word = caption[2:]
else:
word = caption
if f"ENT{i+1}" in prompt:
prompt = prompt.replace(f"ENT{i+1}", caption)
image = resize_keep_aspect_ratio(Image.open(image_path), 768)
save_path = f"{temp_dir}/tmp_resized_input_{i}.png"
image.save(save_path)
input_image_path = save_path
src_inputs.append(
{
"image_path": input_image_path,
"caption": caption
}
)
use_words.append((i, word, word))
test_sample = dict(
input_images=[], position_delta=[0, -32],
prompt=prompt,
target_height=target_height,
target_width=target_width,
seed=seed,
cond_size=cond_size,
vae_skip_iter=vae_skip_iter,
lora_scale=ip_scale,
control_weight_lambda=control_weight_lambda,
latent_sblora_scale=latent_sblora_scale_str,
condition_sblora_scale=vae_lora_scale,
double_attention=double_attention,
single_attention=single_attention,
)
if len(src_inputs) > 0:
test_sample["modulation"] = [
dict(
type="adapter",
src_inputs=src_inputs,
use_words=use_words,
),
]
json_dump(test_sample, f"{temp_dir}/test_sample.json", 'utf-8')
assert single_attention == True
target_size = int(round((target_width * target_height) ** 0.5) // 16 * 16)
print(test_sample)
model.config["train"]["dataset"]["val_condition_size"] = cond_size
model.config["train"]["dataset"]["val_target_size"] = target_size
if control_weight_lambda == "no":
control_weight_lambda = None
if vae_skip_iter == "no":
vae_skip_iter = None
use_condition_sblora_control = True
use_latent_sblora_control = True
image = generate_from_test_sample(
test_sample, model.pipe, model.config,
num_images=num_images,
target_height=target_height,
target_width=target_width,
seed=seed,
store_attn_map=store_attn_map,
vae_skip_iter=vae_skip_iter,
control_weight_lambda=control_weight_lambda,
double_attention=double_attention,
single_attention=single_attention,
ip_scale=ip_scale,
use_latent_sblora_control=use_latent_sblora_control,
latent_sblora_scale=latent_sblora_scale_str,
use_condition_sblora_control=use_condition_sblora_control,
condition_sblora_scale=vae_lora_scale,
)
if isinstance(image, list):
num_cols = 2
num_rows = int(math.ceil(num_images / num_cols))
image = image_grid(image, num_rows, num_cols)
# save_path = f"{temp_dir}/tmp_result.png"
# image.save(save_path)
return image
def create_image_input(index, open=True, indices_state=None):
accordion_state = gr.State(open)
with gr.Column():
with gr.Accordion(f"Input Image {index + 1}", open=accordion_state.value) as accordion:
image = gr.Image(type="filepath", label=f"Image {index + 1}")
caption = gr.Textbox(label=f"ENT{index + 1}", value="")
id_ip_checkbox = gr.Checkbox(value=False, label=f"ID or not {index + 1}", visible=True)
with gr.Row():
vlm_btn = gr.Button("Generate Caption")
face_btn = gr.Button("Crop Face")
det_btn = gr.Button("Crop to Prompt")
accordion.expand(
inputs=[indices_state],
fn = lambda x: update_inputs(True, index, x),
outputs=[indices_state, accordion_state],
)
accordion.collapse(
inputs=[indices_state],
fn = lambda x: update_inputs(False, index, x),
outputs=[indices_state, accordion_state],
)
return image, caption, face_btn, det_btn, vlm_btn, accordion_state, accordion, id_ip_checkbox
def create_min_image_input(index, open=True, indices_state=None):
with gr.Column(min_width=256):
image = gr.Image(type="filepath", label=f"Image {index + 1}")
caption = gr.Textbox(label=f"ENT{index + 1} Prompt", value="")
face_btn = gr.Button("Crop to Face")
det_btn = gr.Button("Crop to Prompt")
id_ip_checkbox = gr.Checkbox(value=True, label=f"ID or not {index + 1}", visible=False)
with gr.Row():
vlm_btn = gr.Button("Generate Caption", visible=False)
return image, caption, face_btn, det_btn, vlm_btn, id_ip_checkbox
def merge_instances(orig_img, indices, ins_bboxes, ins_images):
orig_image_width, orig_image_height = orig_img.width, orig_img.height
final_img = Image.new("RGB", (orig_image_width, orig_image_height), color=(255, 255, 255))
bboxes = []
for i in indices:
bbox = np.array(ins_bboxes[i], dtype=int).tolist()
bboxes.append(bbox)
img = cv2pil(ins_images[i])
mask = (np.array(img)[..., :3] != 255).any(axis=-1)
mask = Image.fromarray(mask.astype(np.uint8) * 255, mode='L')
final_img.paste(img, (bbox[0], bbox[1]), mask)
bbox = merge_bboxes(bboxes)
img = final_img.crop(bbox)
return img, bbox
def change_accordion(at: bool, index: int, state: list):
print(at, state)
indices = state
if at:
if index not in indices:
indices.append(index)
else:
if index in indices:
indices.remove(index)
# 确保 indices 是有序的
indices.sort()
print(indices)
return gr.Accordion(open=at), indices
def update_inputs(is_open, index, state: list):
indices = state
if is_open:
if index not in indices:
indices.append(index)
else:
if index in indices:
indices.remove(index)
indices.sort()
print(indices)
return indices, is_open
def start_session(request: gr.Request):
"""
Initialize a new user session and return the session identifier.
This function is triggered when the Gradio demo loads and creates a unique
session hash that will be used to organize outputs and temporary files
for this specific user session.
Args:
request (gr.Request): Gradio request object containing session information
Returns:
str: Unique session hash identifier
"""
return request.session_hash
# Cleanup on unload
def cleanup(request: gr.Request):
"""
Clean up session-specific directories and temporary files when the user session ends.
This function is triggered when the Gradio demo is unloaded (e.g., when the user
closes the browser tab or navigates away). It removes all temporary files and
directories created during the user's session to free up storage space.
Args:
request (gr.Request): Gradio request object containing session information
"""
sid = request.session_hash
if sid:
d1 = os.path.join(os.environ["XVERSE_PREPROCESSED_DATA"], sid)
shutil.rmtree(d1, ignore_errors=True)
css = """
#col-container {
margin: 0 auto;
max-width: 1096px;
}
"""
if __name__ == "__main__":
with gr.Blocks(css=css) as demo:
session_state = gr.State()
demo.load(start_session, outputs=[session_state])
indices_state = gr.State([0, 1])
with gr.Column(elem_id="col-container"):
gr.Markdown(
""" # XVerse – Consistent Multi-Subject Control of Identity and Semantic Attributes via DiT Modulation
• Source: [Github](https://github.com/bytedance/XVerse)
• HF Space by : [@alexandernasa](https://twitter.com/alexandernasa/) """
)
with gr.Row():
with gr.Column():
with gr.Row():
for i in range(num_inputs):
image, caption, face_btn, det_btn, vlm_btn, id_ip_checkbox = create_min_image_input(i, open=i<2, indices_state=indices_state)
images.append(image)
idip_checkboxes.append(id_ip_checkbox)
captions.append(caption)
face_btns.append(face_btn)
det_btns.append(det_btn)
vlm_btns.append(vlm_btn)
prompt = gr.Textbox(label="Prompt", placeholder="e.g., ENT1 and ENT2")
gen_btn = gr.Button("Generate", variant="primary")
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Number(value=42, label="Seed", info="")
with gr.Row():
target_height = gr.Slider(512, 1024, step=128, value=768, label="Generated Height", info="")
target_width = gr.Slider(512, 1024, step=128, value=768, label="Generated Width", info="")
cond_size = gr.Slider(256, 384, step=128, value=256, label="Condition Size", info="")
with gr.Row():
weight_id = gr.Slider(0.1, 5, step=0.1, value=3, label="weight_id")
weight_ip = gr.Slider(0.1, 5, step=0.1, value=5, label="weight_ip")
with gr.Row():
ip_scale_str = gr.Slider(0.5, 1.5, step=0.01, value=0.85, label="latent_lora_scale")
vae_lora_scale = gr.Slider(0.5, 1.5, step=0.01, value=1.3, label="vae_lora_scale")
with gr.Row():
vae_skip_iter_s1 = gr.Slider(0, 1, step=0.01, value=0.05, label="vae_skip_iter_before")
vae_skip_iter_s2 = gr.Slider(0, 1, step=0.01, value=0.8, label="vae_skip_iter_after")
with gr.Row():
weight_id_ip_str = gr.Textbox(
value="0-1:1/3/5",
label="weight_id_ip_str",
interactive=False, visible=False
)
weight_id.change(
lambda s1, s2: f"0-1:1/{s1}/{s2}",
inputs=[weight_id, weight_ip],
outputs=weight_id_ip_str
)
weight_ip.change(
lambda s1, s2: f"0-1:1/{s1}/{s2}",
inputs=[weight_id, weight_ip],
outputs=weight_id_ip_str
)
vae_skip_iter = gr.Textbox(
value="0-0.05:1,0.8-1:1",
label="vae_skip_iter",
interactive=False, visible=False
)
vae_skip_iter_s1.change(
lambda s1, s2: f"0-{s1}:1,{s2}-1:1",
inputs=[vae_skip_iter_s1, vae_skip_iter_s2],
outputs=vae_skip_iter
)
vae_skip_iter_s2.change(
lambda s1, s2: f"0-{s1}:1,{s2}-1:1",
inputs=[vae_skip_iter_s1, vae_skip_iter_s2],
outputs=vae_skip_iter
)
with gr.Row():
db_latent_lora_scale_str = gr.Textbox(
value="0-1:0.85",
label="db_latent_lora_scale_str",
interactive=False, visible=False
)
sb_latent_lora_scale_str = gr.Textbox(
value="0-1:0.85",
label="sb_latent_lora_scale_str",
interactive=False, visible=False
)
vae_lora_scale_str = gr.Textbox(
value="0-1:1.3",
label="vae_lora_scale_str",
interactive=False, visible=False
)
vae_lora_scale.change(
lambda s: f"0-1:{s}",
inputs=vae_lora_scale,
outputs=vae_lora_scale_str
)
ip_scale_str.change(
lambda s: [f"0-1:{s}", f"0-1:{s}"],
inputs=ip_scale_str,
outputs=[db_latent_lora_scale_str, sb_latent_lora_scale_str]
)
with gr.Row():
double_attention = gr.Checkbox(value=False, label="Double Attention", visible=False)
single_attention = gr.Checkbox(value=True, label="Single Attention", visible=False)
clear_btn = gr.Button("Clear Images")
with gr.Column():
output = gr.Image(label="Result")
examples = gr.Examples(
examples=[
[
"ENT1 wearing ENT2",
"sample/woman2.jpg", "a woman",
"sample/dress.jpg", "a dress",
],
[
"ENT1 wearing a tiny hat",
"sample/hamster.jpg", "a hamster",
None, None,
],
[
"ENT1 holding ENT2 in a park.",
"sample/woman.jpg", "a woman",
"sample/hamster.jpg", "a hamster",
],
],
inputs=[
prompt,
images[0], captions[0],
images[1], captions[1],
],
outputs=output,
fn=generate_image,
cache_examples=True,
)
gen_btn.click(
generate_image,
inputs=[
prompt,
images[0], captions[0],
images[1], captions[1],
idip_checkboxes[0],
idip_checkboxes[1],
cond_size,
target_height,
target_width,
seed,
vae_skip_iter,
weight_id_ip_str,
double_attention,
single_attention,
db_latent_lora_scale_str,
sb_latent_lora_scale_str,
vae_lora_scale_str,
session_state,
],
outputs=output
)
clear_btn.click(clear_images, outputs=images)
for i in range(num_inputs):
face_btns[i].click(crop_face_img, inputs=[images[i]], outputs=[images[i]])
det_btns[i].click(det_seg_img, inputs=[images[i], captions[i]], outputs=[images[i]])
vlm_btns[i].click(vlm_img_caption, inputs=[images[i]], outputs=[captions[i]])
# images[i].upload(vlm_img_caption, inputs=[images[i]], outputs=[captions[i]])
demo.unload(cleanup)
demo.queue()
demo.launch() |