File size: 29,358 Bytes
f0dfe23 5f7fd6a f0dfe23 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 |
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
# Copyright 2024 Black Forest Labs and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
from typing import Any, Callable, Dict, List, Optional, Union
import os
import torch
from torch import Tensor
import torch.nn.functional as F
from diffusers.pipelines import FluxPipeline
from diffusers.utils import logging
from diffusers.loaders import TextualInversionLoaderMixin
from diffusers.pipelines.flux.pipeline_flux import FluxLoraLoaderMixin
from diffusers.models.transformers.transformer_flux import (
USE_PEFT_BACKEND,
scale_lora_layers,
unscale_lora_layers,
logger,
)
from torchvision.transforms import ToPILImage
from peft.tuners.tuners_utils import BaseTunerLayer
# from optimum.quanto import (
# freeze, quantize, QTensor, qfloat8, qint8, qint4, qint2,
# )
import re
import safetensors
from src.adapters.mod_adapters import CLIPModAdapter
from peft import LoraConfig, set_peft_model_state_dict
from transformers import CLIPProcessor, CLIPModel, CLIPVisionModelWithProjection, CLIPVisionModel
def encode_vae_images(pipeline: FluxPipeline, images: Tensor):
images = pipeline.image_processor.preprocess(images)
images = images.to(pipeline.device).to(pipeline.dtype)
images = pipeline.vae.encode(images).latent_dist.sample()
images = (
images - pipeline.vae.config.shift_factor
) * pipeline.vae.config.scaling_factor
images_tokens = pipeline._pack_latents(images, *images.shape)
images_ids = pipeline._prepare_latent_image_ids(
images.shape[0],
images.shape[2],
images.shape[3],
pipeline.device,
pipeline.dtype,
)
if images_tokens.shape[1] != images_ids.shape[0]:
images_ids = pipeline._prepare_latent_image_ids(
images.shape[0],
images.shape[2] // 2,
images.shape[3] // 2,
pipeline.device,
pipeline.dtype,
)
return images_tokens, images_ids
def decode_vae_images(pipeline: FluxPipeline, latents: Tensor, height, width, output_type: Optional[str] = "pil"):
latents = pipeline._unpack_latents(latents, height, width, pipeline.vae_scale_factor)
latents = (latents / pipeline.vae.config.scaling_factor) + pipeline.vae.config.shift_factor
image = pipeline.vae.decode(latents, return_dict=False)[0]
return pipeline.image_processor.postprocess(image, output_type=output_type)
def _get_clip_prompt_embeds(
self,
prompt: Union[str, List[str]],
num_images_per_prompt: int = 1,
device: Optional[torch.device] = None,
):
device = device or self._execution_device
prompt = [prompt] if isinstance(prompt, str) else prompt
batch_size = len(prompt)
if isinstance(self, TextualInversionLoaderMixin):
prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer_max_length,
truncation=True,
return_overflowing_tokens=False,
return_length=False,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False)
# Use pooled output of CLIPTextModel
prompt_embeds = prompt_embeds.pooler_output
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
# duplicate text embeddings for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt)
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)
return prompt_embeds
def encode_prompt_with_clip_t5(
self,
prompt: Union[str, List[str]],
prompt_2: Union[str, List[str]],
device: Optional[torch.device] = None,
num_images_per_prompt: int = 1,
prompt_embeds: Optional[torch.FloatTensor] = None,
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
max_sequence_length: int = 512,
lora_scale: Optional[float] = None,
):
r"""
Args:
prompt (`str` or `List[str]`, *optional*):
prompt to be encoded
prompt_2 (`str` or `List[str]`, *optional*):
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
used in all text-encoders
device: (`torch.device`):
torch device
num_images_per_prompt (`int`):
number of images that should be generated per prompt
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
If not provided, pooled text embeddings will be generated from `prompt` input argument.
lora_scale (`float`, *optional*):
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
"""
device = device or self._execution_device
# set lora scale so that monkey patched LoRA
# function of text encoder can correctly access it
if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin):
self._lora_scale = lora_scale
# dynamically adjust the LoRA scale
if self.text_encoder is not None and USE_PEFT_BACKEND:
scale_lora_layers(self.text_encoder, lora_scale)
if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
scale_lora_layers(self.text_encoder_2, lora_scale)
prompt = [prompt] if isinstance(prompt, str) else prompt
if prompt_embeds is None:
prompt_2 = prompt_2 or prompt
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
# We only use the pooled prompt output from the CLIPTextModel
pooled_prompt_embeds = _get_clip_prompt_embeds(
self=self,
prompt=prompt,
device=device,
num_images_per_prompt=num_images_per_prompt,
)
if self.text_encoder_2 is not None:
prompt_embeds = self._get_t5_prompt_embeds(
prompt=prompt_2,
num_images_per_prompt=num_images_per_prompt,
max_sequence_length=max_sequence_length,
device=device,
)
if self.text_encoder is not None:
if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
# Retrieve the original scale by scaling back the LoRA layers
unscale_lora_layers(self.text_encoder, lora_scale)
if self.text_encoder_2 is not None:
if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
# Retrieve the original scale by scaling back the LoRA layers
unscale_lora_layers(self.text_encoder_2, lora_scale)
dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype
if self.text_encoder_2 is not None:
text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)
else:
text_ids = None
return prompt_embeds, pooled_prompt_embeds, text_ids
def prepare_text_input(
pipeline: FluxPipeline,
prompts,
max_sequence_length=512,
):
# Turn off warnings (CLIP overflow)
logger.setLevel(logging.ERROR)
(
t5_prompt_embeds,
pooled_prompt_embeds,
text_ids,
) = encode_prompt_with_clip_t5(
self=pipeline,
prompt=prompts,
prompt_2=None,
prompt_embeds=None,
pooled_prompt_embeds=None,
device=pipeline.device,
num_images_per_prompt=1,
max_sequence_length=max_sequence_length,
lora_scale=None,
)
# Turn on warnings
logger.setLevel(logging.WARNING)
return t5_prompt_embeds, pooled_prompt_embeds, text_ids
def prepare_t5_input(
pipeline: FluxPipeline,
prompts,
max_sequence_length=512,
):
# Turn off warnings (CLIP overflow)
logger.setLevel(logging.ERROR)
(
t5_prompt_embeds,
pooled_prompt_embeds,
text_ids,
) = encode_prompt_with_clip_t5(
self=pipeline,
prompt=prompts,
prompt_2=None,
prompt_embeds=None,
pooled_prompt_embeds=None,
device=pipeline.device,
num_images_per_prompt=1,
max_sequence_length=max_sequence_length,
lora_scale=None,
)
# Turn on warnings
logger.setLevel(logging.WARNING)
return t5_prompt_embeds, pooled_prompt_embeds, text_ids
def tokenize_t5_prompt(pipe, input_prompt, max_length, **kargs):
return pipe.tokenizer_2(
input_prompt,
padding="max_length",
max_length=max_length,
truncation=True,
return_length=False,
return_overflowing_tokens=False,
return_tensors="pt",
**kargs,
)
def clear_attn_maps(transformer):
for i, block in enumerate(transformer.transformer_blocks):
if hasattr(block.attn, "attn_maps"):
del block.attn.attn_maps
del block.attn.timestep
for i, block in enumerate(transformer.single_transformer_blocks):
if hasattr(block.attn, "cond2latents"):
del block.attn.cond2latents
def gather_attn_maps(transformer, clear=False):
t2i_attn_maps = {}
i2t_attn_maps = {}
for i, block in enumerate(transformer.transformer_blocks):
name = f"block_{i}"
if hasattr(block.attn, "attn_maps"):
attention_maps = block.attn.attn_maps
timesteps = block.attn.timestep # (B,)
for (timestep, (t2i_attn_map, i2t_attn_map)) in zip(timesteps, attention_maps):
timestep = str(timestep.item())
t2i_attn_maps[timestep] = t2i_attn_maps.get(timestep, dict())
t2i_attn_maps[timestep][name] = t2i_attn_maps[timestep].get(name, [])
t2i_attn_maps[timestep][name].append(t2i_attn_map.cpu())
i2t_attn_maps[timestep] = i2t_attn_maps.get(timestep, dict())
i2t_attn_maps[timestep][name] = i2t_attn_maps[timestep].get(name, [])
i2t_attn_maps[timestep][name].append(i2t_attn_map.cpu())
if clear:
del block.attn.attn_maps
for timestep in t2i_attn_maps:
for name in t2i_attn_maps[timestep]:
t2i_attn_maps[timestep][name] = torch.cat(t2i_attn_maps[timestep][name], dim=0)
i2t_attn_maps[timestep][name] = torch.cat(i2t_attn_maps[timestep][name], dim=0)
return t2i_attn_maps, i2t_attn_maps
def process_token(token, startofword):
if '</w>' in token:
token = token.replace('</w>', '')
if startofword:
token = '<' + token + '>'
else:
token = '-' + token + '>'
startofword = True
elif token not in ['<|startoftext|>', '<|endoftext|>']:
if startofword:
token = '<' + token + '-'
startofword = False
else:
token = '-' + token + '-'
return token, startofword
def save_attention_image(attn_map, tokens, batch_dir, to_pil):
startofword = True
for i, (token, a) in enumerate(zip(tokens, attn_map[:len(tokens)])):
token, startofword = process_token(token, startofword)
token = token.replace("/", "-")
if token == '-<pad>-':
continue
a = a.to(torch.float32)
a = a / a.max() * 255 / 256
to_pil(a).save(os.path.join(batch_dir, f'{i}-{token}.png'))
def save_attention_maps(attn_maps, pipe, prompts, base_dir='attn_maps'):
to_pil = ToPILImage()
token_ids = tokenize_t5_prompt(pipe, prompts, 512).input_ids # (B, 512)
token_ids = [x for x in token_ids]
total_tokens = [pipe.tokenizer_2.convert_ids_to_tokens(token_id) for token_id in token_ids]
os.makedirs(base_dir, exist_ok=True)
total_attn_map_shape = (256, 256)
total_attn_map_number = 0
# (B, 24, H, W, 512) -> (B, H, W, 512) -> (B, 512, H, W)
print(attn_maps.keys())
total_attn_map = list(list(attn_maps.values())[0].values())[0].sum(1)
total_attn_map = total_attn_map.permute(0, 3, 1, 2)
total_attn_map = torch.zeros_like(total_attn_map)
total_attn_map = F.interpolate(total_attn_map, size=total_attn_map_shape, mode='bilinear', align_corners=False)
for timestep, layers in attn_maps.items():
timestep_dir = os.path.join(base_dir, f'{timestep}')
os.makedirs(timestep_dir, exist_ok=True)
for layer, attn_map in layers.items():
layer_dir = os.path.join(timestep_dir, f'{layer}')
os.makedirs(layer_dir, exist_ok=True)
attn_map = attn_map.sum(1).squeeze(1).permute(0, 3, 1, 2)
resized_attn_map = F.interpolate(attn_map, size=total_attn_map_shape, mode='bilinear', align_corners=False)
total_attn_map += resized_attn_map
total_attn_map_number += 1
for batch, (attn_map, tokens) in enumerate(zip(resized_attn_map, total_tokens)):
save_attention_image(attn_map, tokens, layer_dir, to_pil)
# for batch, (tokens, attn) in enumerate(zip(total_tokens, attn_map)):
# batch_dir = os.path.join(layer_dir, f'batch-{batch}')
# os.makedirs(batch_dir, exist_ok=True)
# save_attention_image(attn, tokens, batch_dir, to_pil)
total_attn_map /= total_attn_map_number
for batch, (attn_map, tokens) in enumerate(zip(total_attn_map, total_tokens)):
batch_dir = os.path.join(base_dir, f'batch-{batch}')
os.makedirs(batch_dir, exist_ok=True)
save_attention_image(attn_map, tokens, batch_dir, to_pil)
def gather_cond2latents(transformer, clear=False):
c2l_attn_maps = {}
# for i, block in enumerate(transformer.transformer_blocks):
for i, block in enumerate(transformer.single_transformer_blocks):
name = f"block_{i}"
if hasattr(block.attn, "cond2latents"):
attention_maps = block.attn.cond2latents
timesteps = block.attn.cond_timesteps # (B,)
for (timestep, c2l_attn_map) in zip(timesteps, attention_maps):
timestep = str(timestep.item())
c2l_attn_maps[timestep] = c2l_attn_maps.get(timestep, dict())
c2l_attn_maps[timestep][name] = c2l_attn_maps[timestep].get(name, [])
c2l_attn_maps[timestep][name].append(c2l_attn_map.cpu())
if clear:
# del block.attn.attn_maps
del block.attn.cond2latents
del block.attn.cond_timesteps
for timestep in c2l_attn_maps:
for name in c2l_attn_maps[timestep]:
c2l_attn_maps[timestep][name] = torch.cat(c2l_attn_maps[timestep][name], dim=0)
return c2l_attn_maps
def save_cond2latent_image(attn_map, batch_dir, to_pil):
for i, a in enumerate(attn_map): # (N, H, W)
a = a.to(torch.float32)
a = a / a.max() * 255 / 256
to_pil(a).save(os.path.join(batch_dir, f'{i}.png'))
def save_cond2latent(attn_maps, base_dir='attn_maps'):
to_pil = ToPILImage()
os.makedirs(base_dir, exist_ok=True)
total_attn_map_shape = (256, 256)
total_attn_map_number = 0
# (N, H, W) -> (1, N, H, W)
total_attn_map = list(list(attn_maps.values())[0].values())[0].unsqueeze(0)
total_attn_map = torch.zeros_like(total_attn_map)
total_attn_map = F.interpolate(total_attn_map, size=total_attn_map_shape, mode='bilinear', align_corners=False)
for timestep, layers in attn_maps.items():
cur_ts_attn_map = torch.zeros_like(total_attn_map)
cur_ts_attn_map_number = 0
timestep_dir = os.path.join(base_dir, f'{timestep}')
os.makedirs(timestep_dir, exist_ok=True)
for layer, attn_map in layers.items():
# layer_dir = os.path.join(timestep_dir, f'{layer}')
# os.makedirs(layer_dir, exist_ok=True)
attn_map = attn_map.unsqueeze(0) # (1, N, H, W)
resized_attn_map = F.interpolate(attn_map, size=total_attn_map_shape, mode='bilinear', align_corners=False)
cur_ts_attn_map += resized_attn_map
cur_ts_attn_map_number += 1
for batch, attn_map in enumerate(cur_ts_attn_map / cur_ts_attn_map_number):
save_cond2latent_image(attn_map, timestep_dir, to_pil)
total_attn_map += cur_ts_attn_map
total_attn_map_number += cur_ts_attn_map_number
total_attn_map /= total_attn_map_number
for batch, attn_map in enumerate(total_attn_map):
batch_dir = os.path.join(base_dir, f'batch-{batch}')
os.makedirs(batch_dir, exist_ok=True)
save_cond2latent_image(attn_map, batch_dir, to_pil)
def quantization(pipe, qtype):
if qtype != "None" and qtype != "":
if qtype.endswith("quanto"):
if qtype == "int2-quanto":
quant_level = qint2
elif qtype == "int4-quanto":
quant_level = qint4
elif qtype == "int8-quanto":
quant_level = qint8
elif qtype == "fp8-quanto":
quant_level = qfloat8
else:
raise ValueError(f"Invalid quantisation level: {qtype}")
extra_quanto_args = {}
extra_quanto_args["exclude"] = [
"*.norm",
"*.norm1",
"*.norm2",
"*.norm2_context",
"proj_out",
"x_embedder",
"norm_out",
"context_embedder",
]
try:
quantize(pipe.transformer, weights=quant_level, **extra_quanto_args)
quantize(pipe.text_encoder_2, weights=quant_level, **extra_quanto_args)
print("[Quantization] Start freezing")
freeze(pipe.transformer)
freeze(pipe.text_encoder_2)
print("[Quantization] Finished")
except Exception as e:
if "out of memory" in str(e).lower():
print(
"GPU ran out of memory during quantisation. Use --quantize_via=cpu to use the slower CPU method."
)
raise e
else:
assert qtype == "fp8-ao"
from torchao.float8 import convert_to_float8_training, Float8LinearConfig
def module_filter_fn(mod: torch.nn.Module, fqn: str):
# don't convert the output module
if fqn == "proj_out":
return False
# don't convert linear modules with weight dimensions not divisible by 16
if isinstance(mod, torch.nn.Linear):
if mod.in_features % 16 != 0 or mod.out_features % 16 != 0:
return False
return True
convert_to_float8_training(
pipe.transformer, module_filter_fn=module_filter_fn, config=Float8LinearConfig(pad_inner_dim=True)
)
class CustomFluxPipeline:
def __init__(
self,
config,
device="cuda",
ckpt_root=None,
ckpt_root_condition=None,
torch_dtype=torch.bfloat16,
):
model_path = os.getenv("FLUX_MODEL_PATH", "black-forest-labs/FLUX.1-dev")
print("[CustomFluxPipeline] Loading FLUX Pipeline")
self.pipe = FluxPipeline.from_pretrained(model_path, torch_dtype=torch_dtype).to(device)
self.config = config
self.device = device
self.dtype = torch_dtype
if config["model"].get("dit_quant", "None") != "None":
quantization(self.pipe, config["model"]["dit_quant"])
self.modulation_adapters = []
self.pipe.modulation_adapters = []
try:
if config["model"]["modulation"]["use_clip"]:
load_clip(self, config, torch_dtype, device, None, is_training=False)
except Exception as e:
print(e)
if config["model"]["use_dit_lora"] or config["model"]["use_condition_dblock_lora"] or config["model"]["use_condition_sblock_lora"]:
if ckpt_root_condition is None and (config["model"]["use_condition_dblock_lora"] or config["model"]["use_condition_sblock_lora"]):
ckpt_root_condition = ckpt_root
load_dit_lora(self, self.pipe, config, torch_dtype, device, f"{ckpt_root}", f"{ckpt_root_condition}", is_training=False)
def add_modulation_adapter(self, modulation_adapter):
self.modulation_adapters.append(modulation_adapter)
self.pipe.modulation_adapters.append(modulation_adapter)
def clear_modulation_adapters(self):
self.modulation_adapters = []
self.pipe.modulation_adapters = []
torch.cuda.empty_cache()
def load_clip(self, config, torch_dtype, device, ckpt_dir=None, is_training=False):
model_path = os.getenv("CLIP_MODEL_PATH", "openai/clip-vit-large-patch14")
clip_model = CLIPVisionModelWithProjection.from_pretrained(model_path).to(device, dtype=torch_dtype)
clip_processor = CLIPProcessor.from_pretrained(model_path)
self.pipe.clip_model = clip_model
self.pipe.clip_processor = clip_processor
def load_dit_lora(self, pipe, config, torch_dtype, device, ckpt_dir=None, condition_ckpt_dir=None, is_training=False):
if not config["model"]["use_condition_dblock_lora"] and not config["model"]["use_condition_sblock_lora"] and not config["model"]["use_dit_lora"]:
print("[load_dit_lora] no dit lora, no condition lora")
return []
adapter_names = ["default", "condition"]
if condition_ckpt_dir is None:
condition_ckpt_dir = ckpt_dir
if not config["model"]["use_condition_dblock_lora"] and not config["model"]["use_condition_sblock_lora"]:
print("[load_dit_lora] no condition lora")
adapter_names.pop(1)
elif condition_ckpt_dir is not None and os.path.exists(os.path.join(condition_ckpt_dir, "pytorch_lora_weights_condition.safetensors")):
assert "condition" in adapter_names
print(f"[load_dit_lora] load condition lora from {condition_ckpt_dir}")
pipe.transformer.load_lora_adapter(condition_ckpt_dir, use_safetensors=True, adapter_name="condition", weight_name="pytorch_lora_weights_condition.safetensors") # TODO: check if they are trainable
else:
assert is_training
assert "condition" in adapter_names
print("[load_dit_lora] init new condition lora")
pipe.transformer.add_adapter(LoraConfig(**config["model"]["condition_lora_config"]), adapter_name="condition")
if not config["model"]["use_dit_lora"]:
print("[load_dit_lora] no dit lora")
adapter_names.pop(0)
elif ckpt_dir is not None and os.path.exists(os.path.join(ckpt_dir, "pytorch_lora_weights.safetensors")):
assert "default" in adapter_names
print(f"[load_dit_lora] load dit lora from {ckpt_dir}")
lora_file = os.path.join(ckpt_dir, "pytorch_lora_weights.safetensors")
lora_state_dict = safetensors.torch.load_file(lora_file, device="cpu")
single_lora_pattern = "(.*single_transformer_blocks\\.[0-9]+\\.norm\\.linear|.*single_transformer_blocks\\.[0-9]+\\.proj_mlp|.*single_transformer_blocks\\.[0-9]+\\.proj_out|.*single_transformer_blocks\\.[0-9]+\\.attn.to_k|.*single_transformer_blocks\\.[0-9]+\\.attn.to_q|.*single_transformer_blocks\\.[0-9]+\\.attn.to_v|.*single_transformer_blocks\\.[0-9]+\\.attn.to_out)"
latent_lora_pattern = "(.*(?<!single_)transformer_blocks\\.[0-9]+\\.norm1\\.linear|.*(?<!single_)transformer_blocks\\.[0-9]+\\.attn\\.to_k|.*(?<!single_)transformer_blocks\\.[0-9]+\\.attn\\.to_q|.*(?<!single_)transformer_blocks\\.[0-9]+\\.attn\\.to_v|.*(?<!single_)transformer_blocks\\.[0-9]+\\.attn\\.to_out\\.0|.*(?<!single_)transformer_blocks\\.[0-9]+\\.ff\\.net\\.2)"
use_pretrained_dit_single_lora = config["model"].get("use_pretrained_dit_single_lora", True)
use_pretrained_dit_latent_lora = config["model"].get("use_pretrained_dit_latent_lora", True)
if not use_pretrained_dit_single_lora or not use_pretrained_dit_latent_lora:
lora_state_dict_keys = list(lora_state_dict.keys())
for layer_name in lora_state_dict_keys:
if not use_pretrained_dit_single_lora:
if re.search(single_lora_pattern, layer_name):
del lora_state_dict[layer_name]
if not use_pretrained_dit_latent_lora:
if re.search(latent_lora_pattern, layer_name):
del lora_state_dict[layer_name]
pipe.transformer.add_adapter(LoraConfig(**config["model"]["dit_lora_config"]), adapter_name="default")
set_peft_model_state_dict(pipe.transformer, lora_state_dict, adapter_name="default")
else:
pipe.transformer.load_lora_adapter(ckpt_dir, use_safetensors=True, adapter_name="default", weight_name="pytorch_lora_weights.safetensors") # TODO: check if they are trainable
else:
assert is_training
assert "default" in adapter_names
print("[load_dit_lora] init new dit lora")
pipe.transformer.add_adapter(LoraConfig(**config["model"]["dit_lora_config"]), adapter_name="default")
assert len(adapter_names) <= 2 and len(adapter_names) > 0
for name, module in pipe.transformer.named_modules():
if isinstance(module, BaseTunerLayer):
module.set_adapter(adapter_names)
if "default" in adapter_names: assert config["model"]["use_dit_lora"]
if "condition" in adapter_names: assert config["model"]["use_condition_dblock_lora"] or config["model"]["use_condition_sblock_lora"]
lora_layers = list(filter(
lambda p: p[1].requires_grad, pipe.transformer.named_parameters()
))
lora_layers = [l[1] for l in lora_layers]
return lora_layers
def load_modulation_adapter(self, config, torch_dtype, device, ckpt_dir=None, is_training=False):
adapter_type = config["model"]["modulation"]["adapter_type"]
if ckpt_dir is not None and os.path.exists(ckpt_dir):
print(f"loading modulation adapter from {ckpt_dir}")
modulation_adapter = CLIPModAdapter.from_pretrained(
ckpt_dir, subfolder="modulation_adapter", strict=False,
low_cpu_mem_usage=False, device_map=None,
).to(device)
else:
print(f"Init new modulation adapter")
adapter_layers = config["model"]["modulation"]["adapter_layers"]
adapter_width = config["model"]["modulation"]["adapter_width"]
pblock_adapter_layers = config["model"]["modulation"]["per_block_adapter_layers"]
pblock_adapter_width = config["model"]["modulation"]["per_block_adapter_width"]
pblock_adapter_single_blocks = config["model"]["modulation"]["per_block_adapter_single_blocks"]
use_text_mod = config["model"]["modulation"]["use_text_mod"]
use_img_mod = config["model"]["modulation"]["use_img_mod"]
out_dim = config["model"]["modulation"]["out_dim"]
if adapter_type == "clip_adapter":
modulation_adapter = CLIPModAdapter(
out_dim=out_dim,
width=adapter_width,
pblock_width=pblock_adapter_width,
layers=adapter_layers,
pblock_layers=pblock_adapter_layers,
heads=8,
input_text_dim=4096,
input_image_dim=1024,
pblock_single_blocks=pblock_adapter_single_blocks,
)
else:
raise NotImplementedError()
if is_training:
modulation_adapter.train()
try:
modulation_adapter.enable_gradient_checkpointing()
except Exception as e:
print(e)
if not config["model"]["modulation"]["use_perblock_adapter"]:
try:
modulation_adapter.net2.requires_grad_(False)
except Exception as e:
print(e)
else:
modulation_adapter.requires_grad_(False)
modulation_adapter.to(device, dtype=torch_dtype)
return modulation_adapter
def load_ckpt(self, ckpt_dir, is_training=False):
if self.config["model"]["use_dit_lora"]:
self.pipe.transformer.delete_adapters(["subject"])
lora_path = f"{ckpt_dir}/pytorch_lora_weights.safetensors"
print(f"Loading DIT Lora from {lora_path}")
self.pipe.load_lora_weights(lora_path, adapter_name="subject")
|