File size: 14,562 Bytes
4479f79 4e9741b 4479f79 c8cc175 4479f79 c8cc175 4479f79 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 |
import os
import cv2
import torch
import argparse
import numpy as np
import supervision as sv
from PIL import Image
import gc
import sys
from eval.grounded_sam.florence2.modeling_florence2 import Florence2ForConditionalGeneration
from eval.grounded_sam.florence2.processing_florence2 import Florence2Processor
from eval.grounded_sam.sam2.build_sam import build_sam2
from eval.grounded_sam.sam2.sam2_image_predictor import SAM2ImagePredictor
class FlorenceSAM:
# official usage: https://huggingface.co/microsoft/Florence-2-large/blob/main/sample_inference.ipynb
TASK_PROMPT = {
"original": "<GIVEN>",
"caption": "<CAPTION>",
"detailed_caption": "<DETAILED_CAPTION>",
"more_detailed_caption": "<MORE_DETAILED_CAPTION>",
"object_detection": "<OD>",
"dense_region_caption": "<DENSE_REGION_CAPTION>",
"region_proposal": "<REGION_PROPOSAL>",
"phrase_grounding": "<CAPTION_TO_PHRASE_GROUNDING>",
"referring_expression_segmentation": "<REFERRING_EXPRESSION_SEGMENTATION>",
"region_to_segmentation": "<REGION_TO_SEGMENTATION>",
"open_vocabulary_detection": "<OPEN_VOCABULARY_DETECTION>",
"region_to_category": "<REGION_TO_CATEGORY>",
"region_to_description": "<REGION_TO_DESCRIPTION>",
"ocr": "<OCR>",
"ocr_with_region": "<OCR_WITH_REGION>",
}
def __init__(self, device):
"""
Init Florence-2 and SAM 2 Model
"""
print(f"[{self}] init on device {device}")
self.device = torch.device(device)
# with torch.autocast(device_type="cuda", dtype=torch.float32).__enter__()
# self.torch_dtype = torch.float32
# self.torch_dtype = torch.float16
self.torch_dtype = torch.bfloat16
try:
if torch.cuda.get_device_properties(0).major >= 8:
# turn on tfloat32 for Ampere GPUs (https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices)
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
# self.torch_dtype = torch.bfloat16
# else:
# self.torch_dtype = torch.float16
except:
self.torch_dtype = torch.bfloat16
FLORENCE2_MODEL_ID = os.getenv('FLORENCE2_MODEL_PATH')
print(f'FLORENCE2_MODEL_ID is {FLORENCE2_MODEL_ID}')
SAM2_CHECKPOINT = os.getenv('SAM2_MODEL_PATH')
SAM2_CONFIG = "configs/sam2.1/sam2.1_hiera_l.yaml"
self.florence2_model = Florence2ForConditionalGeneration.from_pretrained(
FLORENCE2_MODEL_ID,
trust_remote_code=True,
local_files_only=True,
torch_dtype=self.torch_dtype,
).eval().to(self.device)
self.florence2_processor = Florence2Processor.from_pretrained(
FLORENCE2_MODEL_ID,
trust_remote_code=True,
local_files_only=True,
)
sam2_model = build_sam2(SAM2_CONFIG, SAM2_CHECKPOINT, device=self.device)
self.sam2_predictor = SAM2ImagePredictor(sam2_model)
def __str__(self):
return "FlorenceSAM"
@torch.no_grad()
def run_florence2(self, task_prompt, text_input, image):
model = self.florence2_model
processor = self.florence2_processor
device = self.device
assert model is not None, "You should pass the init florence-2 model here"
assert processor is not None, "You should set florence-2 processor here"
with torch.autocast(device_type="cuda", dtype=torch.float32):
if text_input is None:
prompt = task_prompt
else:
prompt = task_prompt + text_input
inputs = processor(
text=prompt, images=image,
max_length=1024,
truncation=True,
return_tensors="pt",
).to(device, self.torch_dtype)
# inputs = processor(text=prompt, images=image, return_tensors="pt").to(device, self.torch_dtype)
generated_ids = model.generate(
input_ids=inputs["input_ids"].to(device),
pixel_values=inputs["pixel_values"].to(device),
# max_new_tokens=1024,
max_new_tokens=768,
early_stopping=False,
do_sample=False,
num_beams=3,
)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
parsed_answer = processor.post_process_generation(
generated_text,
task=task_prompt,
image_size=(image.width, image.height)
)
return parsed_answer
def caption(self, image, caption_task_prompt='<CAPTION>'):
assert caption_task_prompt in ["<CAPTION>", "<DETAILED_CAPTION>", "<MORE_DETAILED_CAPTION>"]
caption_results = self.run_florence2(caption_task_prompt, None, image)
text_input = caption_results[caption_task_prompt]
caption = text_input
return caption
def segmentation(self, image, input_boxes, seg_model="sam"):
if seg_model == "sam":
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.float32):
sam2_predictor = self.sam2_predictor
sam2_predictor.set_image(np.array(image))
masks, scores, logits = sam2_predictor.predict(
point_coords=None,
point_labels=None,
box=input_boxes,
multimask_output=False,
)
if masks.ndim == 4:
masks = masks.squeeze(1)
if scores.ndim == 2:
scores = scores.squeeze(1)
else:
raise NotImplementedError()
return masks, scores
def post_process_results(self, image, caption, labels, detections, output_dir=None):
result_dict = {
"caption": caption,
"instance_images": [],
"instance_labels": [],
"instance_bboxes": [],
"instance_mask_scores": [],
}
if detections is None:
return detections, result_dict
if output_dir is not None:
os.makedirs(output_dir, exist_ok=True)
cv_image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
box_annotator = sv.BoxAnnotator()
annotated_frame = box_annotator.annotate(scene=cv_image.copy(), detections=detections)
label_annotator = sv.LabelAnnotator(text_position=sv.Position.CENTER)
annotated_frame = label_annotator.annotate(scene=annotated_frame, detections=detections, labels=labels)
if output_dir is not None:
cv2.imwrite(os.path.join(output_dir, "detections.jpg"), annotated_frame)
mask_annotator = sv.MaskAnnotator()
annotated_frame = mask_annotator.annotate(scene=annotated_frame, detections=detections)
if output_dir is not None:
cv2.imwrite(os.path.join(output_dir, "masks.jpg"), annotated_frame)
for detection in detections:
xyxy, mask, confidence, class_id, tracker_id, data = detection
label = labels[class_id]
cropped_img = sv.crop_image(image=cv_image, xyxy=xyxy)
if output_dir is not None:
cv2.imwrite(os.path.join(output_dir, f"cropped_image_{label}.jpg"), cropped_img)
if mask is None:
result_dict["instance_mask_scores"].append(0)
result_dict["instance_images"].append(cropped_img)
else:
mask = np.repeat(mask[..., np.newaxis], 3, axis=-1)
masked_img = np.where(mask, cv_image, 255)
cropped_masked_img = sv.crop_image(image=masked_img, xyxy=xyxy)
result_dict["instance_mask_scores"].append(confidence.item())
result_dict["instance_images"].append(cropped_masked_img)
result_dict["instance_labels"].append(label)
result_dict["instance_bboxes"].append(xyxy)
if output_dir is not None:
cv2.imwrite(os.path.join(output_dir, f"masked_image_{label}.jpg"), cropped_masked_img)
torch.cuda.empty_cache()
gc.collect()
return detections, result_dict
def caption_phrase_grounding_and_segmentation(
self,
image,
seg_model="sam",
caption_task_prompt='<CAPTION>',
original_caption=None,
output_dir=None
):
assert caption_task_prompt in ["<CAPTION>", "<DETAILED_CAPTION>", "<MORE_DETAILED_CAPTION>", "<GIVEN>", "<OPEN_VOCABULARY_DETECTION>"]
assert seg_model in ["sam", "florence2"]
# image caption
if caption_task_prompt in ["<GIVEN>", "<OPEN_VOCABULARY_DETECTION>"]:
assert original_caption is not None
caption = original_caption
else:
caption_results = self.run_florence2(caption_task_prompt, None, image)
text_input = caption_results[caption_task_prompt]
caption = text_input
# phrase grounding
grounding_results = self.run_florence2('<CAPTION_TO_PHRASE_GROUNDING>', caption, image)['<CAPTION_TO_PHRASE_GROUNDING>']
input_boxes = np.array(grounding_results["bboxes"])
class_names = grounding_results["labels"]
class_ids = np.array(list(range(len(class_names))))
# segmentation
masks, scores = self.segmentation(image, input_boxes, seg_model)
labels = [f"{class_name}" for class_name in class_names]
detections = sv.Detections(
xyxy=input_boxes,
mask=masks.astype(bool),
class_id=class_ids,
confidence=scores,
)
return self.post_process_results(image, caption, labels, detections, output_dir)
def od_grounding_and_segmentation(
self,
image,
text_input,
seg_model="sam",
output_dir=None
):
assert seg_model in ["sam", "florence2"]
# od grounding
grounding_results = self.run_florence2('<OPEN_VOCABULARY_DETECTION>', text_input, image)['<OPEN_VOCABULARY_DETECTION>']
if len(grounding_results["bboxes"]) == 0:
detections = None
labels = []
else:
input_boxes = np.array(grounding_results["bboxes"])
class_names = grounding_results["bboxes_labels"]
class_ids = np.array(list(range(len(class_names))))
# segmentation
masks, scores = self.segmentation(image, input_boxes, seg_model)
labels = [f"{class_name}" for class_name in class_names]
detections = sv.Detections(
xyxy=input_boxes,
mask=masks.astype(bool),
class_id=class_ids,
confidence=scores,
)
return self.post_process_results(image, text_input, labels, detections, output_dir)
def od_grounding(
self,
image,
text_input,
output_dir=None
):
# od grounding
grounding_results = self.run_florence2('<OPEN_VOCABULARY_DETECTION>', text_input, image)['<OPEN_VOCABULARY_DETECTION>']
if len(grounding_results["bboxes"]) == 0:
detections = None
labels = []
else:
input_boxes = np.array(grounding_results["bboxes"])
class_names = grounding_results["bboxes_labels"]
class_ids = np.array(list(range(len(class_names))))
labels = [f"{class_name}" for class_name in class_names]
detections = sv.Detections(
xyxy=input_boxes,
class_id=class_ids,
)
return self.post_process_results(image, text_input, labels, detections, output_dir)
def phrase_grounding_and_segmentation(
self,
image,
text_input,
seg_model="sam",
output_dir=None
):
assert seg_model in ["sam", "florence2"]
# phrase grounding
grounding_results = self.run_florence2('<CAPTION_TO_PHRASE_GROUNDING>', text_input, image)['<CAPTION_TO_PHRASE_GROUNDING>']
input_boxes = np.array(grounding_results["bboxes"])
class_names = grounding_results["labels"]
# print(f"[phrase_grounding_and_segmentation] input_label={text_input}, output_label={class_names}")
class_ids = np.array(list(range(len(class_names))))
# segmentation
masks, scores = self.segmentation(image, input_boxes, seg_model)
labels = [f"{class_name}" for class_name in class_names]
detections = sv.Detections(
xyxy=input_boxes,
mask=masks.astype(bool),
class_id=class_ids,
confidence=scores,
)
return self.post_process_results(image, text_input, labels, detections, output_dir)
if __name__ == "__main__":
parser = argparse.ArgumentParser("Grounded SAM 2 Florence-2 Demos", add_help=True)
parser.add_argument("--image_path", type=str, default="./notebooks/images/cars.jpg", required=True, help="path to image file")
parser.add_argument("--caption_type", type=str, default="caption", required=False, help="granularity of caption")
args = parser.parse_args()
# IMAGE_PATH = args.image_path
PIPELINE = "caption_to_phrase_grounding"
CAPTION_TYPE = args.caption_type
assert CAPTION_TYPE in ["caption", "detailed_caption", "more_detailed_caption", "original"]
print(f"Running pipeline: {PIPELINE} now.")
pipeline = FlorenceSAM("cuda:0")
from glob import glob
from tqdm import tqdm
for image_path in tqdm(glob("/mnt/bn/lq-prompt-alignment/personal/chenbowen/code/IPVerse/prompt_alignment/Grounded-SAM-2/notebooks/images/*") * 3):
# for image_path in tqdm(glob("/mnt/bn/lq-prompt-alignment/personal/chenbowen/code/IPVerse/prompt_alignment/Grounded-SAM-2/outputs/gcg_pipeline/00001.tar_debug/*.png")):
print(pipeline.TASK_PROMPT, CAPTION_TYPE)
image = Image.open(image_path).convert("RGB")
pipeline.caption_phrase_grounding_and_segmentation(
image=image,
seg_model="sam",
caption_task_prompt=pipeline.TASK_PROMPT[CAPTION_TYPE],
output_dir=f"./outputs/{os.path.basename(image_path)}"
) |