File size: 8,758 Bytes
4479f79 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import argparse
import cv2
import torch
import torch.nn.functional as F
from PIL import Image
import numpy as np
import facer
import facer.transform
from copy import deepcopy
import PIL
def resize_image(image, max_size=1024):
height,width,_ = image.shape
if width > max_size or height > max_size:
if width > height:
new_width = max_size
new_height = int((height / width) * max_size)
else:
new_height = max_size
new_width = int((width / height) * max_size)
image = cv2.resize(image, (new_width, new_height))
return image
def open_and_resize_image(image_file, max_size=1024, return_type='numpy'):
if isinstance(image_file, str) or isinstance(image_file, PIL.Image.Image):
if isinstance(image_file, str):
img = Image.open(image_file)
else:
img = image_file
width, height = img.size
if width > height:
new_width = max_size
new_height = int((height / width) * max_size)
else:
new_height = max_size
new_width = int((width / height) * max_size)
img = img.resize((new_width, new_height))
if return_type == 'numpy':
return np.array(img.convert('RGB'))
else:
return img
elif isinstance(image_file, np.ndarray):
height,width,_ = image_file.shape
if width > height:
new_width = max_size
new_height = int((height / width) * max_size)
else:
new_height = max_size
new_width = int((width / height) * max_size)
img = cv2.resize(image_file, (new_width, new_height))
assert return_type == 'numpy'
return img
else:
raise TypeError("Do not support this img type")
@torch.no_grad()
def loose_warp_face(input_image, face_detector, face_target_shape=(512, 512), scale=1.3, face_parser=None, device=None, croped_face_scale=3, bg_value = 0, croped_face_y_offset=0.0):
""" Get the tight/loose warp of the face in the image, in which only one face is of concern.
Args:
input_image: Image path, or PIL.Image.Image, or np.ndarray (dtype=np.uint8).
face_detector: a facer.face_detector, for face detection.
face_target_shape: Output resolution.
scale: Scale of the output image w.r.t. the face it contains.
Returns:
PIL.Image.Image, single warped face.
"""
_normalized_face_target_pts = torch.tensor([
[38.2946, 51.6963],
[73.5318, 51.5014],
[56.0252, 71.7366],
[41.5493, 92.3655],
[70.729904, 92.2041]]) / 112.0
target_pts = ((_normalized_face_target_pts -
torch.tensor([0.5, 0.5])) / scale
+ torch.tensor([0.5, 0.5]))
if face_detector is not None:
device = next(face_detector.parameters()).device
if isinstance(input_image, str):
# image_tensor_hwc = facer.read_hwc(input_image)
np_img = open_and_resize_image(input_image)[:,:,:3] # Downsample high-res images to avoid OOM.
img_height, img_width = np_img.shape[:2]
image_tensor_hwc = torch.from_numpy(np_img)
elif isinstance(input_image, Image.Image):
image_tensor_hwc = torch.from_numpy(np.array(input_image)[:,:,:3])
img_height, img_width = image_tensor_hwc.shape[:2]
assert image_tensor_hwc.dtype == torch.uint8
else:
assert isinstance(input_image, np.ndarray), 'Type %s of input_image is unsupported!' % type(input_image)
assert input_image.dtype == np.uint8, 'dtype %s of input np.ndarray is unsupported!' % input_image.dtype
input_image = cv2.cvtColor(input_image, cv2.COLOR_RGB2BGR)[:,:,:3]
input_image = resize_image(input_image)
image_tensor_hwc = torch.from_numpy(input_image)
img_height, img_width = image_tensor_hwc.shape[:2]
image_pt_bchw_255 = facer.hwc2bchw(image_tensor_hwc).to(device)
res = {'cropped_face_masked': None, 'cropped_face': None, 'cropped_img': None, 'cropped_face_mask': None, 'align_face': None}
if face_detector is not None:
try:
face_data = face_detector(image_pt_bchw_255)
except:
import pdb;pdb.set_trace()
if len(face_data) == 0:
return res
if face_parser is not None:
with torch.inference_mode():
faces = face_parser(image_pt_bchw_255, face_data)
seg_logits = faces['seg']['logits']
seg_probs = seg_logits.softmax(dim=1)
seg_probs = seg_probs.argmax(dim=1).unsqueeze(1)[:1]
face_rects = face_data['rects'][:1]
face_rects = face_data['rects'][:1]
x1,y1,x2,y2 = face_rects[0][:4]
x1 = (int(x1.item()))
y1 = (int(y1.item()))
x2 = (int(x2.item()))
y2 = (int(y2.item()))
face_width = x2-x1
face_height = y2-y1
center_x = int(0.5*(x1+x2))
center_y = int(0.5*(y1+y2)) + croped_face_y_offset * face_height
croped_face_width = face_width*croped_face_scale
croped_face_height = face_height*croped_face_scale
x1 = max(int(center_x-0.5*croped_face_width),0)
x2 = min(int(center_x+0.5*croped_face_width), img_width-1)
y1 = max(int(center_y-0.5*croped_face_height),0)
y2 = min(int(center_y+0.5*croped_face_height), img_height-1)
croped_face_height = y2-y1
croped_face_width = x2-x1
center_x = int(0.5*(x1+x2))
center_y = int(0.5*(y1+y2))
croped_face_len = min(croped_face_height, croped_face_width)
x1 = int(center_x - 0.5*croped_face_len)
y1 = int(center_y - 0.5*croped_face_len)
x2 = x1+croped_face_len
y2 = y1+croped_face_len
croped_image_pt_bchw_255 = image_pt_bchw_255[:, :, y1:y2, x1:x2]
face_points = face_data['points'][:1]
batch_inds = face_data['image_ids'][:1]
matrix_align = facer.transform.get_face_align_matrix(
face_points, face_target_shape,
target_pts=(target_pts * torch.tensor(face_target_shape)))
grid = facer.transform.make_tanh_warp_grid(
matrix_align, 0.0, face_target_shape, image_pt_bchw_255.shape[2:],)
image = F.grid_sample(
image_pt_bchw_255.float()[batch_inds],
grid, 'bilinear', align_corners=False)
image_align_raw = deepcopy(image)
image_align_raw = facer.bchw2hwc(image_align_raw).to(torch.uint8).cpu().numpy()
image_align_raw = Image.fromarray(image_align_raw)
image_croped = facer.bchw2hwc(croped_image_pt_bchw_255).to(torch.uint8).cpu().numpy()
image_croped = Image.fromarray(image_croped)
if face_parser is not None:
image_no_mask = deepcopy(image)
new_size = list(seg_probs.shape)
new_size[1] = image.shape[1]
seg_probs = seg_probs.expand(new_size)
assert seg_probs.shape[0] == 1 and image.shape[0] == 1, 'mask shape {}, != image shape {}'.format(seg_probs.shape, image.shape)
mask_img = F.grid_sample(seg_probs.float(), grid, 'bilinear', align_corners=False)
image[mask_img == 0] = bg_value
mask_img[mask_img!=0] = 1
assert mask_img.shape[0] == 1
else:
image_no_mask = image
mask_img = None
else:
image = image_pt_bchw_255
image_no_mask = image_pt_bchw_255
image_align_raw = None
image_croped = None
image = facer.bchw2hwc(image).to(torch.uint8).cpu().numpy()
image_no_mask = facer.bchw2hwc(image_no_mask).to(torch.uint8).cpu().numpy()
res.update({'cropped_face_masked': Image.fromarray(image), 'cropped_face': Image.fromarray(image_no_mask), 'cropped_img':image_croped, 'cropped_face_mask': mask_img, 'align_face': image_align_raw})
return res
def tight_warp_face(input_image, face_detector, face_parser=None, device=None):
return loose_warp_face(input_image, face_detector,
face_target_shape=(112, 112), scale=1, face_parser=face_parser, device=device)
|