File size: 8,758 Bytes
4479f79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import argparse

import cv2
import torch
import torch.nn.functional as F
from PIL import Image
import numpy as np
import facer
import facer.transform
from copy import deepcopy
import PIL


def resize_image(image, max_size=1024):
    height,width,_ = image.shape
    if width > max_size or height > max_size:
        if width > height:
            new_width = max_size
            new_height = int((height / width) * max_size)
        else:
            new_height = max_size
            new_width = int((width / height) * max_size)
        image = cv2.resize(image, (new_width, new_height))
    return image 

def open_and_resize_image(image_file, max_size=1024, return_type='numpy'):
    if isinstance(image_file, str) or isinstance(image_file, PIL.Image.Image):
        if isinstance(image_file, str):
            img = Image.open(image_file)
        else:
            img = image_file
        width, height = img.size
        if width > height:
            new_width = max_size
            new_height = int((height / width) * max_size)
        else:
            new_height = max_size
            new_width = int((width / height) * max_size)
        img = img.resize((new_width, new_height))
        if return_type == 'numpy':
            return np.array(img.convert('RGB'))
        else:
            return img
    elif isinstance(image_file, np.ndarray):
        height,width,_ = image_file.shape
        if width > height:
            new_width = max_size
            new_height = int((height / width) * max_size)
        else:
            new_height = max_size
            new_width = int((width / height) * max_size)
        img = cv2.resize(image_file, (new_width, new_height))
        assert return_type == 'numpy'
        return img
    else:
        raise TypeError("Do not support this img type")


@torch.no_grad()
def loose_warp_face(input_image, face_detector, face_target_shape=(512, 512), scale=1.3, face_parser=None, device=None, croped_face_scale=3, bg_value = 0, croped_face_y_offset=0.0):
    """ Get the tight/loose warp of the face in the image, in which only one face is of concern.

    Args:
        input_image: Image path, or PIL.Image.Image, or np.ndarray (dtype=np.uint8).
        face_detector: a facer.face_detector, for face detection.
        face_target_shape: Output resolution.
        scale: Scale of the output image w.r.t. the face it contains.

    Returns:
        PIL.Image.Image, single warped face.
    """
    _normalized_face_target_pts = torch.tensor([
    [38.2946, 51.6963],
    [73.5318, 51.5014],
    [56.0252, 71.7366],
    [41.5493, 92.3655],
    [70.729904, 92.2041]]) / 112.0
    
    target_pts = ((_normalized_face_target_pts -
                   torch.tensor([0.5, 0.5])) / scale
                  + torch.tensor([0.5, 0.5]))
    if face_detector is not None:
        device = next(face_detector.parameters()).device

    if isinstance(input_image, str):
        # image_tensor_hwc = facer.read_hwc(input_image)
        np_img = open_and_resize_image(input_image)[:,:,:3]      # Downsample high-res images to avoid OOM.
        img_height, img_width = np_img.shape[:2]
        image_tensor_hwc = torch.from_numpy(np_img)
    elif isinstance(input_image, Image.Image):
        image_tensor_hwc = torch.from_numpy(np.array(input_image)[:,:,:3])
        img_height, img_width = image_tensor_hwc.shape[:2]
        assert image_tensor_hwc.dtype == torch.uint8
    else:
        assert isinstance(input_image, np.ndarray), 'Type %s of input_image is unsupported!' % type(input_image)
        assert input_image.dtype == np.uint8, 'dtype %s of input np.ndarray is unsupported!' % input_image.dtype
        input_image = cv2.cvtColor(input_image, cv2.COLOR_RGB2BGR)[:,:,:3]
        input_image = resize_image(input_image)
        image_tensor_hwc = torch.from_numpy(input_image)
        img_height, img_width = image_tensor_hwc.shape[:2]
    
    image_pt_bchw_255 = facer.hwc2bchw(image_tensor_hwc).to(device)

    res = {'cropped_face_masked': None, 'cropped_face': None, 'cropped_img': None, 'cropped_face_mask': None, 'align_face': None}

    if face_detector is not None:
        try:
            face_data = face_detector(image_pt_bchw_255)
        except:
            import pdb;pdb.set_trace()
        
        if len(face_data) == 0:
            return res
        
        if face_parser is not None:
            with torch.inference_mode():
                faces = face_parser(image_pt_bchw_255, face_data)
            seg_logits = faces['seg']['logits']
            seg_probs = seg_logits.softmax(dim=1)
            seg_probs = seg_probs.argmax(dim=1).unsqueeze(1)[:1]

        face_rects = face_data['rects'][:1]
        face_rects = face_data['rects'][:1]
        x1,y1,x2,y2 = face_rects[0][:4]
        x1 = (int(x1.item()))
        y1 = (int(y1.item()))
        x2 = (int(x2.item()))
        y2 = (int(y2.item()))
        face_width = x2-x1
        face_height = y2-y1
        center_x = int(0.5*(x1+x2))
        center_y = int(0.5*(y1+y2)) + croped_face_y_offset * face_height
        croped_face_width = face_width*croped_face_scale
        croped_face_height = face_height*croped_face_scale
        
        x1 = max(int(center_x-0.5*croped_face_width),0)
        x2 = min(int(center_x+0.5*croped_face_width), img_width-1)
        y1 = max(int(center_y-0.5*croped_face_height),0)
        y2 = min(int(center_y+0.5*croped_face_height), img_height-1)
        croped_face_height = y2-y1
        croped_face_width = x2-x1
        center_x = int(0.5*(x1+x2))
        center_y = int(0.5*(y1+y2))
        croped_face_len = min(croped_face_height, croped_face_width)
        x1 = int(center_x - 0.5*croped_face_len)
        y1 = int(center_y - 0.5*croped_face_len)
        x2 = x1+croped_face_len
        y2 = y1+croped_face_len
        croped_image_pt_bchw_255 = image_pt_bchw_255[:, :, y1:y2, x1:x2]
        face_points = face_data['points'][:1]
        batch_inds = face_data['image_ids'][:1]
        
        matrix_align = facer.transform.get_face_align_matrix(
            face_points, face_target_shape, 
            target_pts=(target_pts * torch.tensor(face_target_shape)))
        
        grid = facer.transform.make_tanh_warp_grid(
            matrix_align, 0.0, face_target_shape, image_pt_bchw_255.shape[2:],)
        image = F.grid_sample(
            image_pt_bchw_255.float()[batch_inds], 
            grid, 'bilinear', align_corners=False)
        image_align_raw = deepcopy(image)
        image_align_raw = facer.bchw2hwc(image_align_raw).to(torch.uint8).cpu().numpy()
        image_align_raw = Image.fromarray(image_align_raw)
        image_croped = facer.bchw2hwc(croped_image_pt_bchw_255).to(torch.uint8).cpu().numpy()
        image_croped = Image.fromarray(image_croped)
        if face_parser is not None:
            image_no_mask = deepcopy(image)
            new_size = list(seg_probs.shape)
            new_size[1] = image.shape[1]
            seg_probs = seg_probs.expand(new_size)
            assert seg_probs.shape[0] == 1 and image.shape[0] == 1, 'mask shape {}, != image shape {}'.format(seg_probs.shape, image.shape)
            mask_img = F.grid_sample(seg_probs.float(), grid, 'bilinear', align_corners=False)
            image[mask_img == 0] = bg_value
            mask_img[mask_img!=0] = 1
            assert mask_img.shape[0] == 1
        else:
            image_no_mask = image
            mask_img = None
    else:
        image = image_pt_bchw_255
        image_no_mask = image_pt_bchw_255
        image_align_raw = None
        image_croped = None

    image = facer.bchw2hwc(image).to(torch.uint8).cpu().numpy()
    image_no_mask = facer.bchw2hwc(image_no_mask).to(torch.uint8).cpu().numpy()
    
    res.update({'cropped_face_masked': Image.fromarray(image), 'cropped_face': Image.fromarray(image_no_mask), 'cropped_img':image_croped, 'cropped_face_mask': mask_img, 'align_face': image_align_raw})
    return res

def tight_warp_face(input_image, face_detector, face_parser=None, device=None):
    return loose_warp_face(input_image, face_detector, 
        face_target_shape=(112, 112), scale=1, face_parser=face_parser, device=device)