File size: 5,989 Bytes
4479f79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from torch.nn import Linear, Conv2d, BatchNorm1d, BatchNorm2d, PReLU, ReLU, Sigmoid, Dropout2d, Dropout, AvgPool2d, MaxPool2d, AdaptiveAvgPool2d, Sequential, Module, Parameter
import torch.nn.functional as F
import torch
from collections import namedtuple
import math
import pdb

class Flatten(Module):
    def forward(self, input):
        return input.view(input.size(0), -1)

def l2_norm(input,axis=1):
    norm = torch.norm(input,2,axis,True)
    output = torch.div(input, norm)
    return output

class SEModule(Module):
    def __init__(self, channels, reduction):
        super(SEModule, self).__init__()
        self.avg_pool = AdaptiveAvgPool2d(1)
        self.fc1 = Conv2d(
            channels, channels // reduction, kernel_size=1, padding=0 ,bias=False)
        self.relu = ReLU(inplace=True)
        self.fc2 = Conv2d(
            channels // reduction, channels, kernel_size=1, padding=0 ,bias=False)
        self.sigmoid = Sigmoid()

    def forward(self, x):
        module_input = x
        x = self.avg_pool(x)
        x = self.fc1(x)
        x = self.relu(x)
        x = self.fc2(x)
        x = self.sigmoid(x)
        return module_input * x

class bottleneck_IR(Module):
    def __init__(self, in_channel, depth, stride):
        super(bottleneck_IR, self).__init__()
        if in_channel == depth:
            self.shortcut_layer = MaxPool2d(1, stride)
        else:
            self.shortcut_layer = Sequential(
                Conv2d(in_channel, depth, (1, 1), stride ,bias=False), BatchNorm2d(depth))
        self.res_layer = Sequential(
            BatchNorm2d(in_channel),
            Conv2d(in_channel, depth, (3, 3), (1, 1), 1 ,bias=False), PReLU(depth),
            Conv2d(depth, depth, (3, 3), stride, 1 ,bias=False), BatchNorm2d(depth))

    def forward(self, x):
        shortcut = self.shortcut_layer(x)
        res = self.res_layer(x)
        return res + shortcut

class bottleneck_IR_SE(Module):
    def __init__(self, in_channel, depth, stride):
        super(bottleneck_IR_SE, self).__init__()
        if in_channel == depth:
            self.shortcut_layer = MaxPool2d(1, stride)
        else:
            self.shortcut_layer = Sequential(
                Conv2d(in_channel, depth, (1, 1), stride ,bias=False), 
                BatchNorm2d(depth))
        self.res_layer = Sequential(
            BatchNorm2d(in_channel),
            Conv2d(in_channel, depth, (3,3), (1,1),1 ,bias=False),
            PReLU(depth),
            Conv2d(depth, depth, (3,3), stride, 1 ,bias=False),
            BatchNorm2d(depth),
            SEModule(depth,16)
            )
    def forward(self,x):
        shortcut = self.shortcut_layer(x)
        res = self.res_layer(x)
        return res + shortcut

class Bottleneck(namedtuple('Block', ['in_channel', 'depth', 'stride'])):
    '''A named tuple describing a ResNet block.'''
    
def get_block(in_channel, depth, num_units, stride = 2):
    return [Bottleneck(in_channel, depth, stride)] + [Bottleneck(depth, depth, 1) for i in range(num_units-1)]

def get_blocks(num_layers):
    if num_layers == 50:
        blocks = [
            get_block(in_channel=64, depth=64, num_units = 3),
            get_block(in_channel=64, depth=128, num_units=4),
            get_block(in_channel=128, depth=256, num_units=14),
            get_block(in_channel=256, depth=512, num_units=3)
        ]
    elif num_layers == 100:
        blocks = [
            get_block(in_channel=64, depth=64, num_units=3),
            get_block(in_channel=64, depth=128, num_units=13),
            get_block(in_channel=128, depth=256, num_units=30),
            get_block(in_channel=256, depth=512, num_units=3)
        ]
    elif num_layers == 152:
        blocks = [
            get_block(in_channel=64, depth=64, num_units=3),
            get_block(in_channel=64, depth=128, num_units=8),
            get_block(in_channel=128, depth=256, num_units=36),
            get_block(in_channel=256, depth=512, num_units=3)
        ]
    return blocks

class Backbone(Module):
    def __init__(self, num_layers, drop_ratio, mode='ir'):
        super(Backbone, self).__init__()
        assert num_layers in [50, 100, 152], 'num_layers should be 50,100, or 152'
        assert mode in ['ir', 'ir_se'], 'mode should be ir or ir_se'
        blocks = get_blocks(num_layers)
        if mode == 'ir':
            unit_module = bottleneck_IR
        elif mode == 'ir_se':
            unit_module = bottleneck_IR_SE
        self.input_layer = Sequential(Conv2d(3, 64, (3, 3), 1, 1 ,bias=False), 
                                      BatchNorm2d(64), 
                                      PReLU(64))
        self.output_layer = Sequential(BatchNorm2d(512), 
                                       Dropout(drop_ratio),
                                       Flatten(),
                                       Linear(512 * 7 * 7, 512),
                                       BatchNorm1d(512))
        modules = []
        for block in blocks:
            for bottleneck in block:
                modules.append(
                    unit_module(bottleneck.in_channel,
                                bottleneck.depth,
                                bottleneck.stride))
        self.body = Sequential(*modules)
    
    def forward(self,x):
        x = self.input_layer(x)
        x = self.body(x)
        x = self.output_layer(x)
        return l2_norm(x)