File size: 5,176 Bytes
4479f79 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import time
from tqdm import tqdm
from glob import glob
import argparse
import math
import random
import numpy as np
from PIL import Image
import torch
import torch.distributed as dist
from src.flux.generate import seed_everything
from src.utils.data_utils import get_train_config, get_rank_and_worldsize
from src.utils.data_utils import pad_to_square, pad_to_target, json_dump, json_load, split_grid, image_grid
import shutil
from eval.tools.dpg_score import DPGScore
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--input_dir", type=str, default="../examples")
parser.add_argument("--test_list_name", type=str, default="base_test_list_200")
args = parser.parse_args()
return args
def main():
args = parse_args()
print(args)
local_rank, global_rank, world_size = get_rank_and_worldsize()
print(f"local_rank={local_rank}, global_rank={global_rank}, world_size={world_size}")
is_local_main_process = local_rank == 0
is_main_process = global_rank == 0
torch.cuda.set_device(local_rank)
dtype = torch.bfloat16
device = "cuda"
run_name = time.strftime("%m%d_$H")
dpg_score_model = DPGScore(f"cuda:{local_rank}")
test_list = json_load(f"eval/tools/{args.test_list_name}.json", 'utf-8')
dsg_list = json_load(f"eval/tools/{args.test_list_name}_DSG.json", 'utf-8')
images = list(glob(f"{args.input_dir}/*.png"))
print(args.input_dir)
print(len(test_list), len(dsg_list), len(images))
assert len(test_list) == len(dsg_list)
num_samples = min(len(test_list), len(images))
num_ranks = world_size
assert local_rank == global_rank
if world_size > 1:
num_per_rank = math.ceil(num_samples / num_ranks)
test_list_indices = list(range(num_samples))
random.seed(0)
random.shuffle(test_list_indices)
local_test_list_indices = test_list_indices[local_rank*num_per_rank:(local_rank+1)*num_per_rank]
os.environ['CUDA_VISIBLE_DEVICES'] = str(local_rank % 8)
print(f"[worker {local_rank}] got {len(local_test_list_indices)} local samples")
run_name = time.strftime("%Y%m%d-%H")
temp_dir = os.path.join(args.input_dir, f"eval_temp_{run_name}")
if is_main_process:
if os.path.exists(temp_dir):
shutil.rmtree(temp_dir)
os.makedirs(temp_dir)
rank_json = {}
with torch.no_grad():
for i in tqdm(local_test_list_indices):
test_sample = test_list[i]
q_dict = dsg_list[i]
assert q_dict["prompt"] == test_sample["prompt"]
image_path = list(filter(lambda x: x.split("/")[-1].split("_")[0] == str(i), images))[0]
rank_json[i] = []
for j, img in enumerate(split_grid(Image.open(image_path))):
rank_json[i].append({})
result = dpg_score_model(img, q_dict)
for q_id, question in result["qid2question"].items():
answer = result["qid2answer"][q_id]
rank_json[i][j][question] = answer
rank_json[i][j]['average_score_with_dependency'] = result['average_score_with_dependency']
rank_json[i][j]['average_score_without_dependency'] = result['average_score_without_dependency']
json_dump(rank_json, f"{temp_dir}/scores_{global_rank}.json", "utf-8")
if is_main_process:
while len(glob(f"{temp_dir}/scores_*.json")) < world_size:
time.sleep(5)
time.sleep(5) # wait for the file writting to be finished
merged_json = {}
prompt_scores = {}
scores = []
for rank_path in glob(f"{temp_dir}/scores_*.json"):
rank_json = json_load(rank_path, "utf-8")
merged_json.update(rank_json)
for i in rank_json:
score_list = [x['average_score_with_dependency'] for x in rank_json[i]]
prompt_scores[i] = np.mean(score_list)
scores += score_list
json_dump(merged_json, f"{args.input_dir}/dpg_scores_{run_name}.json", "utf-8")
dpg_score = np.mean(scores)
lines_to_write = [
f"DPG Score: {dpg_score:.2f}\n"
]
print(lines_to_write[0])
for i, score in prompt_scores.items():
lines_to_write.append(f"{i}: {score:.2f}\n")
with open(f"{args.input_dir}/dpg_scores_{run_name}.txt", "w") as f:
f.writelines(lines_to_write)
shutil.rmtree(temp_dir)
if __name__ == "__main__":
main()
|