File size: 6,104 Bytes
4479f79 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import time
from tqdm import tqdm
from glob import glob
import argparse
import math
import random
import numpy as np
from PIL import Image
from collections import defaultdict
import torch
import torch.distributed as dist
from src.flux.generate import seed_everything
from src.utils.data_utils import get_train_config, get_rank_and_worldsize
from src.utils.data_utils import pad_to_square, pad_to_target, json_dump, json_load, split_grid, image_grid, pil2tensor
import shutil
from eval.tools.florence_sam import ObjectDetector
from eval.tools.dino import DINOScore
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--input_dir", type=str, default="../examples")
parser.add_argument("--test_list_name", type=str, default="base_test_list_200")
args = parser.parse_args()
return args
def main():
args = parse_args()
print(args)
local_rank, global_rank, world_size = get_rank_and_worldsize()
print(f"local_rank={local_rank}, global_rank={global_rank}, world_size={world_size}")
is_local_main_process = local_rank == 0
is_main_process = global_rank == 0
torch.cuda.set_device(local_rank)
dtype = torch.bfloat16
device = "cuda"
run_name = time.strftime("%m%d_$H")
detector_model = ObjectDetector(device)
dino_model = DINOScore(device)
test_list = json_load(f"eval/tools/{args.test_list_name}.json", 'utf-8')
images = list(glob(f"{args.input_dir}/*.png"))
print(len(test_list), len(images))
assert len(test_list) == len(images)
num_samples = len(test_list)
num_ranks = world_size
assert local_rank == global_rank
if world_size > 1:
num_per_rank = math.ceil(num_samples / num_ranks)
test_list_indices = list(range(num_samples))
random.seed(0)
random.shuffle(test_list_indices)
local_test_list_indices = test_list_indices[local_rank*num_per_rank:(local_rank+1)*num_per_rank]
os.environ['CUDA_VISIBLE_DEVICES'] = str(local_rank % 8)
print(f"[worker {local_rank}] got {len(local_test_list_indices)} local samples")
run_name = time.strftime("%Y%m%d-%H")
temp_dir = os.path.join(args.input_dir, f"eval_ip_temp_{run_name}")
if is_main_process:
if os.path.exists(temp_dir):
shutil.rmtree(temp_dir)
os.makedirs(temp_dir)
rank_json = {}
with torch.no_grad():
for i in tqdm(local_test_list_indices):
test_sample = test_list[i]
real_paths, real_ips, real_names, real_labels = [], [], [], []
for j, x in enumerate(test_sample["modulation"][0]["src_inputs"]):
img_path = x["image_path"]
name = "_".join(img_path.split("/")[-2:])
label = test_sample["modulation"][0]["use_words"][j][1]
if not name.startswith("human"):
real_paths.append(img_path)
real_ips.append(Image.open(img_path).convert("RGB"))
real_names.append(name)
real_labels.append(label)
gen_img_path = list(filter(lambda x: x.split("/")[-1].split("_")[0] == str(i), images))[0]
rank_json[i] = []
for j, gen_img in enumerate(split_grid(Image.open(gen_img_path))):
rank_json[i].append({})
if len(real_names) > 0:
for real_ip, real_name, real_label in zip(real_ips, real_names, real_labels):
found_ips = detector_model.get_instances(gen_img, real_label, min_size=gen_img.size[0]//20)[:3]
found_ips = [pad_to_square(x) for x in found_ips]
score = 0
if len(found_ips) > 0:
score = max([dino_model(real_ip, ip) for ip in found_ips])
rank_json[i][j][real_name] = score
json_dump(rank_json, f"{temp_dir}/scores_{global_rank}.json", "utf-8")
if is_main_process:
while len(glob(f"{temp_dir}/scores_*.json")) < world_size:
time.sleep(5)
time.sleep(5) # wait for the file writting to be finished
merged_json = {}
ip_scores = defaultdict(list)
all_scores = []
for rank_path in glob(f"{temp_dir}/scores_*.json"):
rank_json = json_load(rank_path, "utf-8")
merged_json.update(rank_json)
for i in rank_json:
grid_json = rank_json[i]
for img_json in grid_json:
for ip_name, ip_score in img_json.items():
ip_scores[ip_name].append(ip_score)
for ip_name in ip_scores:
all_scores += ip_scores[ip_name]
ip_scores[ip_name] = np.mean(ip_scores[ip_name])
print(ip_name, ip_scores[ip_name])
json_dump(merged_json, f"{args.input_dir}/ip_scores_{run_name}.json", "utf-8")
final_ip_score = np.mean(all_scores)
lines_to_write = [
f"IP Score: {final_ip_score:.2f}\n"
]
print(lines_to_write[0])
for ip_name, score in ip_scores.items():
lines_to_write.append(f"{ip_name}: {score:.2f}\n")
with open(f"{args.input_dir}/ip_scores_{run_name}.txt", "w") as f:
f.writelines(lines_to_write)
shutil.rmtree(temp_dir)
if __name__ == "__main__":
main()
|