File size: 8,617 Bytes
f0dfe23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
# Copyright 2024 Black Forest Labs and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Dict, List, Optional, Set, Tuple, Union
from dataclasses import dataclass
from inspect import isfunction

import os
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, repeat

from diffusers.models.modeling_utils import ModelMixin
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.models.embeddings import TimestepEmbedding, Timesteps

from src.utils.data_utils import pad_to_square, pad_to_target

from transformers import CLIPProcessor, CLIPModel, CLIPVisionModelWithProjection, CLIPVisionModel

from collections import OrderedDict

class SquaredReLU(nn.Module):
    def forward(self, x: torch.Tensor):
        return torch.square(torch.relu(x))

class AdaLayerNorm(nn.Module):
    def __init__(self, embedding_dim: int, time_embedding_dim: Optional[int] = None, ln_bias=True):
        super().__init__()

        if time_embedding_dim is None:
            time_embedding_dim = embedding_dim

        self.silu = nn.SiLU()
        self.linear = nn.Linear(time_embedding_dim, 2 * embedding_dim, bias=True)
        nn.init.zeros_(self.linear.weight)
        nn.init.zeros_(self.linear.bias)

        self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6, bias=ln_bias)

    def forward(
        self, x: torch.Tensor, timestep_embedding: torch.Tensor
    ) -> tuple[torch.Tensor, torch.Tensor]:
        emb = self.linear(self.silu(timestep_embedding))
        shift, scale = emb.view(len(x), 1, -1).chunk(2, dim=-1)
        x = self.norm(x) * (1 + scale) + shift
        return x

class PerceiverAttentionBlock(nn.Module):
    def __init__(
        self, d_model: int, n_heads: int, 
        time_embedding_dim: Optional[int] = None,
        double_kv: Optional[bool] = True,
    ):
        super().__init__()
        self.attn = nn.MultiheadAttention(d_model, n_heads, batch_first=True)
        self.n_heads = n_heads

        self.mlp = nn.Sequential(
            OrderedDict(
                [
                    ("c_fc", nn.Linear(d_model, d_model * 4)),
                    ("sq_relu", SquaredReLU()),
                    ("c_proj", nn.Linear(d_model * 4, d_model)),
                ]
            )
        )
        self.double_kv = double_kv
        self.ln_1 = AdaLayerNorm(d_model, time_embedding_dim)
        self.ln_2 = AdaLayerNorm(d_model, time_embedding_dim)
        self.ln_ff = AdaLayerNorm(d_model, time_embedding_dim)

    def attention(self, q: torch.Tensor, kv: torch.Tensor, attn_mask: torch.Tensor = None):
        attn_output, attn_output_weights = self.attn(q, kv, kv, need_weights=False, key_padding_mask=attn_mask)
        return attn_output

    def forward(
        self,
        x: torch.Tensor,
        latents: torch.Tensor,
        timestep_embedding: torch.Tensor = None,
        attn_mask: torch.Tensor = None
    ):
        normed_latents = self.ln_1(latents, timestep_embedding)
        normed_x = self.ln_2(x, timestep_embedding)
        if self.double_kv:
            kv = torch.cat([normed_latents, normed_x], dim=1)
        else:
            kv = normed_x
        attn = self.attention(
            q=normed_latents,
            kv=kv,
            attn_mask=attn_mask,
        )
        if attn_mask is not None:
            query_padding_mask = attn_mask.chunk(2, -1)[0].unsqueeze(-1) # (B, 2S) -> (B, S, 1)
            latents = latents + attn * (~query_padding_mask).to(attn)
        else:
            latents = latents + attn
        latents = latents + self.mlp(self.ln_ff(latents, timestep_embedding))
        return latents
   

class CLIPModAdapter(ModelMixin, ConfigMixin):
    @register_to_config
    def __init__(
        self, 
        out_dim=3072,
        width=1024,
        pblock_width=512,
        layers=6,
        pblock_layers=1,
        heads=8,
        input_text_dim=4096,
        input_image_dim=1024,
        pblock_single_blocks=0,
    ):
        super().__init__()
        self.out_dim = out_dim

        self.net = TextImageResampler(
            width=width,
            layers=layers,
            heads=heads,
            input_text_dim=input_text_dim,
            input_image_dim=input_image_dim,
            time_embedding_dim=64,
            output_dim=out_dim,
        )
        self.net2 = TextImageResampler(
            width=pblock_width,
            layers=pblock_layers,
            heads=heads,
            input_text_dim=input_text_dim,
            input_image_dim=input_image_dim,
            time_embedding_dim=64,
            output_dim=out_dim*(19+pblock_single_blocks),
        )
        
    def enable_gradient_checkpointing(self):
        self.gradient_checkpointing = True
        self.net.enable_gradient_checkpointing()
        self.net2.enable_gradient_checkpointing()


    def forward(self, t_emb, llm_hidden_states, clip_outputs):
        if len(llm_hidden_states.shape) > 3:
            llm_hidden_states = llm_hidden_states[..., -1, :]
        batch_size, seq_length = llm_hidden_states.shape[:2]

        img_cls_feat = clip_outputs["image_embeds"] # (B, 768)
        img_last_feat = clip_outputs["last_hidden_state"] # (B, 257, 1024)
        img_layer_feats = clip_outputs["hidden_states"] # [(B, 257, 1024) * 25]
        img_second_last_feat = img_layer_feats[-2] # (B, 257, 1024)

        img_hidden_states = img_second_last_feat # (B, 257, 1024)

        x = self.net(llm_hidden_states, img_hidden_states) # (B, S, 3072)
        x2 = self.net2(llm_hidden_states, img_hidden_states).view(batch_size, seq_length, -1, self.out_dim) # (B, S, N, 3072)
        return x, x2


class TextImageResampler(nn.Module):
    def __init__(
        self,
        width: int = 768,
        layers: int = 6,
        heads: int = 8,
        output_dim: int = 3072,
        input_text_dim: int = 4096,
        input_image_dim: int = 1024,
        time_embedding_dim: int = 64,
    ):
        super().__init__()
        self.output_dim = output_dim
        self.input_text_dim = input_text_dim
        self.input_image_dim = input_image_dim
        self.time_embedding_dim = time_embedding_dim

        self.text_proj_in = nn.Linear(input_text_dim, width)
        self.image_proj_in = nn.Linear(input_image_dim, width)

        self.perceiver_blocks = nn.Sequential(
            *[
                PerceiverAttentionBlock(
                    width, heads, time_embedding_dim=self.time_embedding_dim
                )
                for _ in range(layers)
            ]
        )

        self.proj_out = nn.Sequential(
            nn.Linear(width, output_dim), nn.LayerNorm(output_dim)
        )
        
        self.gradient_checkpointing = False

    def enable_gradient_checkpointing(self):
        self.gradient_checkpointing = True
        

    def forward(
        self, 
        text_hidden_states: torch.Tensor, 
        image_hidden_states: torch.Tensor,
    ):
        timestep_embedding = torch.zeros((text_hidden_states.shape[0], 1, self.time_embedding_dim)).to(text_hidden_states)

        text_hidden_states = self.text_proj_in(text_hidden_states)
        image_hidden_states = self.image_proj_in(image_hidden_states)

        for p_block in self.perceiver_blocks:
            if self.gradient_checkpointing:
                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)
                    return custom_forward

                text_hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(p_block),
                    image_hidden_states,
                    text_hidden_states,
                    timestep_embedding
                )
            else:
                text_hidden_states = p_block(image_hidden_states, text_hidden_states, timestep_embedding=timestep_embedding)

        text_hidden_states = self.proj_out(text_hidden_states)

        return text_hidden_states