File size: 39,288 Bytes
f0dfe23 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 |
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
# Copyright 2024 Black Forest Labs and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from typing import List, Union, Optional, Tuple, Dict, Any, Callable
from diffusers.models.attention_processor import Attention, F
from .lora_controller import enable_lora
from einops import rearrange
import math
from diffusers.models.embeddings import apply_rotary_emb
def scaled_dot_product_attention(query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False, scale=None) -> torch.Tensor:
# Efficient implementation equivalent to the following:
L, S = query.size(-2), key.size(-2)
B = query.size(0)
scale_factor = 1 / math.sqrt(query.size(-1)) if scale is None else scale
attn_bias = torch.zeros(B, 1, L, S, dtype=query.dtype, device=query.device)
if is_causal:
assert attn_mask is None
assert False
temp_mask = torch.ones(L, S, dtype=torch.bool).tril(diagonal=0)
attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf"))
attn_bias.to(query.dtype)
if attn_mask is not None:
if attn_mask.dtype == torch.bool:
attn_bias.masked_fill_(attn_mask.logical_not(), float("-inf"))
else:
attn_bias += attn_mask
attn_weight = query @ key.transpose(-2, -1) * scale_factor
attn_weight += attn_bias.to(attn_weight.device)
attn_weight = torch.softmax(attn_weight, dim=-1)
return torch.dropout(attn_weight, dropout_p, train=True) @ value, attn_weight
def attn_forward(
attn: Attention,
hidden_states: torch.FloatTensor,
encoder_hidden_states: torch.FloatTensor = None,
condition_latents: torch.FloatTensor = None,
text_cond_mask: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
image_rotary_emb: Optional[torch.Tensor] = None,
cond_rotary_emb: Optional[torch.Tensor] = None,
model_config: Optional[Dict[str, Any]] = {},
store_attn_map: bool = False,
latent_height: Optional[int] = None,
timestep: Optional[torch.Tensor] = None,
last_attn_map: Optional[torch.Tensor] = None,
condition_sblora_weight: Optional[float] = None,
latent_sblora_weight: Optional[float] = None,
) -> torch.FloatTensor:
batch_size, _, _ = (
hidden_states.shape
if encoder_hidden_states is None
else encoder_hidden_states.shape
)
is_sblock = encoder_hidden_states is None
is_dblock = not is_sblock
with enable_lora(
(attn.to_q, attn.to_k, attn.to_v),
(is_dblock and model_config["latent_lora"]) or (is_sblock and model_config["sblock_lora"]), latent_sblora_weight=latent_sblora_weight
):
query = attn.to_q(hidden_states)
key = attn.to_k(hidden_states)
value = attn.to_v(hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
if attn.norm_q is not None:
query = attn.norm_q(query)
if attn.norm_k is not None:
key = attn.norm_k(key)
# the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states`
if encoder_hidden_states is not None:
# `context` projections.
with enable_lora((attn.add_q_proj, attn.add_k_proj, attn.add_v_proj), model_config["text_lora"]):
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
if attn.norm_added_q is not None:
encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
if attn.norm_added_k is not None:
encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj)
# attention
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
if image_rotary_emb is not None:
query = apply_rotary_emb(query, image_rotary_emb)
key = apply_rotary_emb(key, image_rotary_emb)
if condition_latents is not None:
assert condition_latents.shape[0] == batch_size
cond_length = condition_latents.shape[1]
cond_lora_activate = (is_dblock and model_config["use_condition_dblock_lora"]) or (is_sblock and model_config["use_condition_sblock_lora"])
with enable_lora(
(attn.to_q, attn.to_k, attn.to_v),
dit_activated=not cond_lora_activate, cond_activated=cond_lora_activate, latent_sblora_weight=condition_sblora_weight #TODO implementation for condition lora not share
):
cond_query = attn.to_q(condition_latents)
cond_key = attn.to_k(condition_latents)
cond_value = attn.to_v(condition_latents)
cond_query = cond_query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
cond_key = cond_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
cond_value = cond_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
if attn.norm_q is not None:
cond_query = attn.norm_q(cond_query)
if attn.norm_k is not None:
cond_key = attn.norm_k(cond_key)
if cond_rotary_emb is not None:
cond_query = apply_rotary_emb(cond_query, cond_rotary_emb)
cond_key = apply_rotary_emb(cond_key, cond_rotary_emb)
if model_config.get("text_cond_attn", False):
if encoder_hidden_states is not None:
assert text_cond_mask is not None
img_length = hidden_states.shape[1]
seq_length = encoder_hidden_states_query_proj.shape[2]
assert len(text_cond_mask.shape) == 2 or len(text_cond_mask.shape) == 3
if len(text_cond_mask.shape) == 2:
text_cond_mask = text_cond_mask.unsqueeze(-1)
N = text_cond_mask.shape[-1] # num_condition
else:
raise NotImplementedError()
query = torch.cat([query, cond_query], dim=2) # (B, 24, S+HW+NC)
key = torch.cat([key, cond_key], dim=2)
value = torch.cat([value, cond_value], dim=2)
assert query.shape[2] == key.shape[2]
assert query.shape[2] == cond_length + img_length + seq_length
attention_mask = torch.ones(batch_size, 1, query.shape[2], key.shape[2], device=query.device, dtype=torch.bool)
attention_mask[..., -cond_length:, :-cond_length] = False
attention_mask[..., :-cond_length, -cond_length:] = False
if encoder_hidden_states is not None:
tokens_per_cond = cond_length // N
for i in range(batch_size):
for j in range(N):
start = seq_length + img_length + tokens_per_cond * j
attention_mask[i, 0, :seq_length, start:start+tokens_per_cond] = text_cond_mask[i, :, j].unsqueeze(-1)
elif model_config.get("union_cond_attn", False):
query = torch.cat([query, cond_query], dim=2) # (B, 24, S+HW+NC)
key = torch.cat([key, cond_key], dim=2)
value = torch.cat([value, cond_value], dim=2)
attention_mask = torch.ones(batch_size, 1, query.shape[2], key.shape[2], device=query.device, dtype=torch.bool)
cond_length = condition_latents.shape[1]
assert len(text_cond_mask.shape) == 2 or len(text_cond_mask.shape) == 3
if len(text_cond_mask.shape) == 2:
text_cond_mask = text_cond_mask.unsqueeze(-1)
N = text_cond_mask.shape[-1] # num_condition
tokens_per_cond = cond_length // N
seq_length = 0
if encoder_hidden_states is not None:
seq_length = encoder_hidden_states_query_proj.shape[2]
img_length = hidden_states.shape[1]
else:
seq_length = 128 # TODO, pass it here
img_length = hidden_states.shape[1] - seq_length
if not model_config.get("cond_cond_cross_attn", True):
# no cross attention between different conds
cond_start = seq_length + img_length
attention_mask[:, :, cond_start:, cond_start:] = False
for j in range(N):
start = cond_start + tokens_per_cond * j
end = cond_start + tokens_per_cond * (j + 1)
attention_mask[..., start:end, start:end] = True
# double block
if encoder_hidden_states is not None:
# no cross attention
attention_mask[..., :-cond_length, -cond_length:] = False
if model_config.get("use_attention_double", False) and last_attn_map is not None:
attention_mask = torch.zeros(batch_size, 1, query.shape[2], key.shape[2], device=query.device, dtype=torch.bfloat16)
last_attn_map = last_attn_map.to(query.device)
attention_mask[..., seq_length:-cond_length, :seq_length] = torch.log(last_attn_map/last_attn_map.mean()*model_config["use_atten_lambda"]).view(-1, seq_length)
# single block
else:
# print(last_attn_map)
if model_config.get("use_attention_single", False) and last_attn_map is not None:
attention_mask = torch.zeros(batch_size, 1, query.shape[2], key.shape[2], device=query.device, dtype=torch.bfloat16)
attention_mask[..., :seq_length, -cond_length:] = float('-inf')
# 确保 use_atten_lambda 是列表
use_atten_lambdas = model_config["use_atten_lambda"] if len(model_config["use_atten_lambda"])!=1 else model_config["use_atten_lambda"] * (N+1)
attention_mask[..., -cond_length:, seq_length:-cond_length] = math.log(use_atten_lambdas[0])
last_attn_map = last_attn_map.to(query.device)
cond2latents = []
for i in range(batch_size):
AM = last_attn_map[i] # (H, W, S)
for j in range(N):
start = seq_length + img_length + tokens_per_cond * j
mask = text_cond_mask[i, :, j] # (S,)
weighted_AM = AM * mask.unsqueeze(0).unsqueeze(0) # 扩展 mask 维度以匹配 AM
cond2latent = weighted_AM.mean(-1)
if model_config.get("attention_norm", "mean") == "max":
cond2latent = cond2latent / cond2latent.max() # 归一化
else:
cond2latent = cond2latent / cond2latent.mean() # 归一化
cond2latent = cond2latent.view(-1,) # (WH,)
# 使用对应 condition 的 lambda 值
current_lambda = use_atten_lambdas[j+1]
# 将 cond2latent 复制到 attention_mask[i, 0, :seq_length, start:start+tokens_per_cond]
attention_mask[i, 0, seq_length:-cond_length, start:start+tokens_per_cond] = torch.log(current_lambda * cond2latent.unsqueeze(-1))
# 将 text_cond_mask[i, :, j].unsqueeze(-1) 为 true 的位置设置为当前 lambda 值
cond = mask.unsqueeze(-1).expand(-1, tokens_per_cond)
sub_mask = attention_mask[i, 0, :seq_length, start:start+tokens_per_cond]
attention_mask[i, 0, :seq_length, start:start+tokens_per_cond] = torch.where(cond, math.log(current_lambda), sub_mask)
cond2latents.append(
cond2latent.reshape(latent_height, -1).detach().cpu()
)
if store_attn_map:
if not hasattr(attn, "cond2latents"):
attn.cond2latents = []
attn.cond_timesteps = []
attn.cond2latents.append(torch.stack(cond2latents, dim=0)) # (N, H, W)
attn.cond_timesteps.append(timestep.cpu())
pass
else:
raise NotImplementedError()
if hasattr(attn, "c_factor"):
assert False
attention_mask = torch.zeros(
query.shape[2], key.shape[2], device=query.device, dtype=query.dtype
)
bias = torch.log(attn.c_factor[0])
attention_mask[-cond_length:, :-cond_length] = bias
attention_mask[:-cond_length, -cond_length:] = bias
####################################################################################################
if store_attn_map and encoder_hidden_states is not None:
seq_length = encoder_hidden_states_query_proj.shape[2]
img_length = hidden_states.shape[1]
hidden_states, attention_probs = scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
# (B, 24, S+HW, S+HW) -> (B, 24, HW, S)
t2i_attention_probs = attention_probs[:, :, seq_length:seq_length+img_length, :seq_length]
# (B, 24, S+HW, S+HW) -> (B, 24, S, HW) -> (B, 24, HW, S)
i2t_attention_probs = attention_probs[:, :, :seq_length, seq_length:seq_length+img_length].transpose(-1, -2)
if not hasattr(attn, "attn_maps"):
attn.attn_maps = []
attn.timestep = []
attn.attn_maps.append(
(
rearrange(t2i_attention_probs, 'B attn_head (H W) attn_dim -> B attn_head H W attn_dim', H=latent_height),
rearrange(i2t_attention_probs, 'B attn_head (H W) attn_dim -> B attn_head H W attn_dim', H=latent_height),
)
)
attn.timestep.append(timestep.cpu())
has_nan = torch.isnan(hidden_states).any().item()
if has_nan:
print("[attn_forward] detect nan hidden_states in store_attn_map")
else:
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
has_nan = torch.isnan(hidden_states).any().item()
if has_nan:
print("[attn_forward] detect nan hidden_states")
####################################################################################################
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim).to(query.dtype)
if encoder_hidden_states is not None:
if condition_latents is not None:
encoder_hidden_states, hidden_states, condition_latents = (
hidden_states[:, : encoder_hidden_states.shape[1]],
hidden_states[
:, encoder_hidden_states.shape[1] : -condition_latents.shape[1]
],
hidden_states[:, -condition_latents.shape[1] :],
)
if model_config.get("latent_cond_by_text_attn", False):
# hidden_states += add_latent # (B, HW, D)
hidden_states = new_hidden_states # (B, HW, D)
else:
encoder_hidden_states, hidden_states = (
hidden_states[:, : encoder_hidden_states.shape[1]],
hidden_states[:, encoder_hidden_states.shape[1] :],
)
with enable_lora((attn.to_out[0],), model_config["latent_lora"]):
hidden_states = attn.to_out[0](hidden_states) # linear proj
hidden_states = attn.to_out[1](hidden_states) # dropout
with enable_lora((attn.to_add_out,), model_config["text_lora"]):
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
if condition_latents is not None:
cond_lora_activate = model_config["use_condition_dblock_lora"]
with enable_lora(
(attn.to_out[0],),
dit_activated=not cond_lora_activate, cond_activated=cond_lora_activate,
):
condition_latents = attn.to_out[0](condition_latents)
condition_latents = attn.to_out[1](condition_latents)
return (
(hidden_states, encoder_hidden_states, condition_latents)
if condition_latents is not None
else (hidden_states, encoder_hidden_states)
)
elif condition_latents is not None:
hidden_states, condition_latents = (
hidden_states[:, : -condition_latents.shape[1]],
hidden_states[:, -condition_latents.shape[1] :],
)
return hidden_states, condition_latents
else:
return hidden_states
def set_delta_by_start_end(
start_ends,
src_delta_emb, src_delta_emb_pblock,
delta_emb, delta_emb_pblock, delta_emb_mask,
):
for (i, j, src_s, src_e, tar_s, tar_e) in start_ends:
if src_delta_emb is not None:
delta_emb[i, tar_s:tar_e] = src_delta_emb[j, src_s:src_e]
if src_delta_emb_pblock is not None:
delta_emb_pblock[i, tar_s:tar_e] = src_delta_emb_pblock[j, src_s:src_e]
delta_emb_mask[i, tar_s:tar_e] = True
return delta_emb, delta_emb_pblock, delta_emb_mask
def norm1_context_forward(
self,
x: torch.Tensor,
condition_latents: Optional[torch.Tensor] = None,
timestep: Optional[torch.Tensor] = None,
class_labels: Optional[torch.LongTensor] = None,
hidden_dtype: Optional[torch.dtype] = None,
emb: Optional[torch.Tensor] = None,
delta_emb: Optional[torch.Tensor] = None,
delta_emb_cblock: Optional[torch.Tensor] = None,
delta_emb_mask: Optional[torch.Tensor] = None,
delta_start_ends = None,
mod_adapter = None,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
batch_size, seq_length = x.shape[:2]
if mod_adapter is not None:
assert False
if delta_emb is None:
emb = self.linear(self.silu(emb)) # (B, 3072) -> (B, 18432)
emb = emb.unsqueeze(1) # (B, 1, 18432)
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb.chunk(6, dim=-1) # (B, 1, 3072)
x = self.norm(x) * (1 + scale_msa) + shift_msa # (B, 1, 3072)
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
else:
# (B, 3072) > (B, 18432) -> (B, S, 18432)
emb_orig = self.linear(self.silu(emb)).unsqueeze(1).expand((-1, seq_length, -1))
# (B, 3072) -> (B, 1, 3072) -> (B, S, 3072) -> (B, S, 18432)
if delta_emb_cblock is None:
emb_new = self.linear(self.silu(emb.unsqueeze(1) + delta_emb))
else:
emb_new = self.linear(self.silu(emb.unsqueeze(1) + delta_emb + delta_emb_cblock))
emb = torch.where(delta_emb_mask.unsqueeze(-1), emb_new, emb_orig) # (B, S, 18432)
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb.chunk(6, dim=-1) # (B, S, 3072)
x = self.norm(x) * (1 + scale_msa) + shift_msa # (B, S, 3072)
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
def norm1_forward(
self,
x: torch.Tensor,
timestep: Optional[torch.Tensor] = None,
class_labels: Optional[torch.LongTensor] = None,
hidden_dtype: Optional[torch.dtype] = None,
emb: Optional[torch.Tensor] = None,
delta_emb: Optional[torch.Tensor] = None,
delta_emb_cblock: Optional[torch.Tensor] = None,
delta_emb_mask: Optional[torch.Tensor] = None,
t2i_attn_map: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
if delta_emb is None:
emb = self.linear(self.silu(emb)) # (B, 3072) -> (B, 18432)
emb = emb.unsqueeze(1) # (B, 1, 18432)
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb.chunk(6, dim=-1) # (B, 1, 3072)
x = self.norm(x) * (1 + scale_msa) + shift_msa # (B, 1, 3072)
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
else:
raise NotImplementedError()
batch_size, HW = x.shape[:2]
seq_length = t2i_attn_map.shape[-1]
# (B, 3072) > (B, 18432) -> (B, S, 18432)
emb_orig = self.linear(self.silu(emb)).unsqueeze(1).expand((-1, seq_length, -1))
# (B, 3072) -> (B, 1, 3072) -> (B, S, 3072) -> (B, S, 18432)
if delta_emb_cblock is None:
emb_new = self.linear(self.silu(emb.unsqueeze(1) + delta_emb))
else:
emb_new = self.linear(self.silu(emb.unsqueeze(1) + delta_emb + delta_emb_cblock))
# attn_weight (B, HW, S)
emb = torch.where(delta_emb_mask.unsqueeze(-1), emb_new, emb_orig) # (B, S, 18432)
emb = t2i_attn_map @ emb # (B, HW, 18432)
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb.chunk(6, dim=-1) # (B, HW, 3072)
x = self.norm(x) * (1 + scale_msa) + shift_msa # (B, HW, 3072)
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
def block_forward(
self,
hidden_states: torch.FloatTensor,
encoder_hidden_states: torch.FloatTensor,
condition_latents: torch.FloatTensor,
temb: torch.FloatTensor,
cond_temb: torch.FloatTensor,
text_cond_mask: Optional[torch.FloatTensor] = None,
delta_emb: Optional[torch.FloatTensor] = None,
delta_emb_cblock: Optional[torch.FloatTensor] = None,
delta_emb_mask: Optional[torch.Tensor] = None,
delta_start_ends = None,
cond_rotary_emb=None,
image_rotary_emb=None,
model_config: Optional[Dict[str, Any]] = {},
store_attn_map: bool = False,
use_text_mod: bool = True,
use_img_mod: bool = False,
mod_adapter = None,
latent_height: Optional[int] = None,
timestep: Optional[torch.Tensor] = None,
last_attn_map: Optional[torch.Tensor] = None,
):
batch_size = hidden_states.shape[0]
use_cond = condition_latents is not None
train_partial_latent_lora = model_config.get("train_partial_latent_lora", False)
train_partial_text_lora = model_config.get("train_partial_text_lora", False)
if train_partial_latent_lora:
train_partial_latent_lora_layers = model_config.get("train_partial_latent_lora_layers", "")
activate_norm1 = activate_ff = True
if "norm1" not in train_partial_latent_lora_layers:
activate_norm1 = False
if "ff" not in train_partial_latent_lora_layers:
activate_ff = False
if train_partial_text_lora:
train_partial_text_lora_layers = model_config.get("train_partial_text_lora_layers", "")
activate_norm1_context = activate_ff_context = True
if "norm1" not in train_partial_text_lora_layers:
activate_norm1_context = False
if "ff" not in train_partial_text_lora_layers:
activate_ff_context = False
if use_cond:
cond_lora_activate = model_config["use_condition_dblock_lora"]
with enable_lora(
(self.norm1.linear,),
dit_activated=activate_norm1 if train_partial_latent_lora else not cond_lora_activate, cond_activated=cond_lora_activate,
):
norm_condition_latents, cond_gate_msa, cond_shift_mlp, cond_scale_mlp, cond_gate_mlp = (
norm1_forward(
self.norm1,
condition_latents,
emb=cond_temb,
)
)
delta_emb_img = delta_emb_img_cblock = None
if use_img_mod and use_text_mod:
if delta_emb is not None:
delta_emb_img, delta_emb = delta_emb.chunk(2, dim=-1)
if delta_emb_cblock is not None:
delta_emb_img_cblock, delta_emb_cblock = delta_emb_cblock.chunk(2, dim=-1)
with enable_lora((self.norm1.linear,), activate_norm1 if train_partial_latent_lora else model_config["latent_lora"]):
if use_img_mod and encoder_hidden_states is not None:
with torch.no_grad():
attn = self.attn
norm_img = self.norm1(hidden_states, emb=temb)[0]
norm_text = self.norm1_context(encoder_hidden_states, emb=temb)[0]
img_query = attn.to_q(norm_img)
img_key = attn.to_k(norm_img)
text_query = attn.add_q_proj(norm_text)
text_key = attn.add_k_proj(norm_text)
inner_dim = img_key.shape[-1]
head_dim = inner_dim // attn.heads
img_query = img_query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # (B, N, HW, D)
img_key = img_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # (B, N, HW, D)
text_query = text_query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # (B, N, S, D)
text_key = text_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # (B, N, S, D)
if attn.norm_q is not None:
img_query = attn.norm_q(img_query)
if attn.norm_added_q is not None:
text_query = attn.norm_added_q(text_query)
if attn.norm_k is not None:
img_key = attn.norm_k(img_key)
if attn.norm_added_k is not None:
text_key = attn.norm_added_k(text_key)
query = torch.cat([text_query, img_query], dim=2) # (B, N, S+HW, D)
key = torch.cat([text_key, img_key], dim=2) # (B, N, S+HW, D)
if image_rotary_emb is not None:
query = apply_rotary_emb(query, image_rotary_emb)
key = apply_rotary_emb(key, image_rotary_emb)
seq_length = text_query.shape[2]
scale_factor = 1 / math.sqrt(query.size(-1))
t2i_attn_map = query @ key.transpose(-2, -1) * scale_factor # (B, N, S+HW, S+HW)
t2i_attn_map = t2i_attn_map.mean(1)[:, seq_length:, :seq_length] # (B, S+HW, S+HW) -> (B, HW, S)
t2i_attn_map = torch.softmax(t2i_attn_map, dim=-1) # (B, HW, S)
else:
t2i_attn_map = None
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
norm1_forward(
self.norm1,
hidden_states,
emb=temb,
delta_emb=delta_emb_img,
delta_emb_cblock=delta_emb_img_cblock,
delta_emb_mask=delta_emb_mask,
t2i_attn_map=t2i_attn_map,
)
)
# Modulation for double block
with enable_lora((self.norm1_context.linear,), activate_norm1_context if train_partial_text_lora else model_config["text_lora"]):
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = (
norm1_context_forward(
self.norm1_context,
encoder_hidden_states,
emb=temb,
delta_emb=delta_emb if use_text_mod else None,
delta_emb_cblock=delta_emb_cblock if use_text_mod else None,
delta_emb_mask=delta_emb_mask if use_text_mod else None,
delta_start_ends=delta_start_ends if use_text_mod else None,
mod_adapter=mod_adapter,
condition_latents=condition_latents,
)
)
# Attention.
result = attn_forward(
self.attn,
model_config=model_config,
hidden_states=norm_hidden_states,
encoder_hidden_states=norm_encoder_hidden_states,
condition_latents=norm_condition_latents if use_cond else None,
text_cond_mask=text_cond_mask if use_cond else None,
image_rotary_emb=image_rotary_emb,
cond_rotary_emb=cond_rotary_emb if use_cond else None,
store_attn_map=store_attn_map,
latent_height=latent_height,
timestep=timestep,
last_attn_map=last_attn_map,
)
attn_output, context_attn_output = result[:2]
cond_attn_output = result[2] if use_cond else None
# Process attention outputs for the `hidden_states`.
# 1. hidden_states
attn_output = gate_msa * attn_output # NOTE: changed by img mod
hidden_states = hidden_states + attn_output
# 2. encoder_hidden_states
context_attn_output = c_gate_msa * context_attn_output # NOTE: changed by delta_temb
encoder_hidden_states = encoder_hidden_states + context_attn_output
# 3. condition_latents
if use_cond:
cond_attn_output = cond_gate_msa * cond_attn_output # NOTE: changed by img mod
condition_latents = condition_latents + cond_attn_output
if model_config.get("add_cond_attn", False):
hidden_states += cond_attn_output
# LayerNorm + MLP.
# 1. hidden_states
norm_hidden_states = self.norm2(hidden_states)
norm_hidden_states = (
norm_hidden_states * (1 + scale_mlp) + shift_mlp # NOTE: changed by img mod
)
# 2. encoder_hidden_states
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
norm_encoder_hidden_states = (
norm_encoder_hidden_states * (1 + c_scale_mlp) + c_shift_mlp # NOTE: changed by delta_temb
)
# 3. condition_latents
if use_cond:
norm_condition_latents = self.norm2(condition_latents)
norm_condition_latents = (
norm_condition_latents * (1 + cond_scale_mlp) + cond_shift_mlp # NOTE: changed by img mod
)
# Feed-forward.
with enable_lora((self.ff.net[2],), activate_ff if train_partial_latent_lora else model_config["latent_lora"]):
# 1. hidden_states
ff_output = self.ff(norm_hidden_states)
ff_output = gate_mlp * ff_output # NOTE: changed by img mod
# 2. encoder_hidden_states
with enable_lora((self.ff_context.net[2],), activate_ff_context if train_partial_text_lora else model_config["text_lora"]):
context_ff_output = self.ff_context(norm_encoder_hidden_states)
context_ff_output = c_gate_mlp * context_ff_output # NOTE: changed by delta_temb
# 3. condition_latents
if use_cond:
cond_lora_activate = model_config["use_condition_dblock_lora"]
with enable_lora(
(self.ff.net[2],),
dit_activated=activate_ff if train_partial_latent_lora else not cond_lora_activate, cond_activated=cond_lora_activate,
):
cond_ff_output = self.ff(norm_condition_latents)
cond_ff_output = cond_gate_mlp * cond_ff_output # NOTE: changed by img mod
# Process feed-forward outputs.
hidden_states = hidden_states + ff_output
encoder_hidden_states = encoder_hidden_states + context_ff_output
if use_cond:
condition_latents = condition_latents + cond_ff_output
# Clip to avoid overflow.
if encoder_hidden_states.dtype == torch.float16:
encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504)
return encoder_hidden_states, hidden_states, condition_latents if use_cond else None
def single_norm_forward(
self,
x: torch.Tensor,
timestep: Optional[torch.Tensor] = None,
class_labels: Optional[torch.LongTensor] = None,
hidden_dtype: Optional[torch.dtype] = None,
emb: Optional[torch.Tensor] = None,
delta_emb: Optional[torch.Tensor] = None,
delta_emb_cblock: Optional[torch.Tensor] = None,
delta_emb_mask: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
if delta_emb is None:
emb = self.linear(self.silu(emb)) # (B, 3072) -> (B, 9216)
emb = emb.unsqueeze(1) # (B, 1, 9216)
shift_msa, scale_msa, gate_msa = emb.chunk(3, dim=-1) # (B, 1, 3072)
x = self.norm(x) * (1 + scale_msa) + shift_msa # (B, S, 3072) * (B, 1, 3072)
return x, gate_msa
else:
img_text_seq_length = x.shape[1] # S+
text_seq_length = delta_emb_mask.shape[1] # S
# (B, 3072) -> (B, 9216) -> (B, S+, 9216)
emb_orig = self.linear(self.silu(emb)).unsqueeze(1).expand((-1, img_text_seq_length, -1))
# (B, 3072) -> (B, 1, 3072) -> (B, S, 3072) -> (B, S, 9216)
if delta_emb_cblock is None:
emb_new = self.linear(self.silu(emb.unsqueeze(1) + delta_emb))
else:
emb_new = self.linear(self.silu(emb.unsqueeze(1) + delta_emb + delta_emb_cblock))
emb_text = torch.where(delta_emb_mask.unsqueeze(-1), emb_new, emb_orig[:, :text_seq_length]) # (B, S, 9216)
emb_img = emb_orig[:, text_seq_length:] # (B, s, 9216)
emb = torch.cat([emb_text, emb_img], dim=1) # (B, S+, 9216)
shift_msa, scale_msa, gate_msa = emb.chunk(3, dim=-1) # (B, S+, 3072)
x = self.norm(x) * (1 + scale_msa) + shift_msa # (B, S+, 3072)
return x, gate_msa
def single_block_forward(
self,
hidden_states: torch.FloatTensor,
temb: torch.FloatTensor,
image_rotary_emb=None,
condition_latents: torch.FloatTensor = None,
text_cond_mask: torch.FloatTensor = None,
cond_temb: torch.FloatTensor = None,
delta_emb: Optional[torch.FloatTensor] = None,
delta_emb_cblock: Optional[torch.FloatTensor] = None,
delta_emb_mask: Optional[torch.Tensor] = None,
use_text_mod: bool = True,
use_img_mod: bool = False,
cond_rotary_emb=None,
latent_height: Optional[int] = None,
timestep: Optional[torch.Tensor] = None,
store_attn_map: bool = False,
model_config: Optional[Dict[str, Any]] = {},
last_attn_map: Optional[torch.Tensor] = None,
latent_sblora_weight=None,
condition_sblora_weight=None,
):
using_cond = condition_latents is not None
residual = hidden_states
train_partial_lora = model_config.get("train_partial_lora", False)
if train_partial_lora:
train_partial_lora_layers = model_config.get("train_partial_lora_layers", "")
activate_norm = activate_projmlp = activate_projout = True
if "norm" not in train_partial_lora_layers:
activate_norm = False
if "projmlp" not in train_partial_lora_layers:
activate_projmlp = False
if "projout" not in train_partial_lora_layers:
activate_projout = False
with enable_lora((self.norm.linear,), activate_norm if train_partial_lora else model_config["sblock_lora"], latent_sblora_weight=latent_sblora_weight):
# Modulation for single block
norm_hidden_states, gate = single_norm_forward(
self.norm,
hidden_states,
emb=temb,
delta_emb=delta_emb if use_text_mod else None,
delta_emb_cblock=delta_emb_cblock if use_text_mod else None,
delta_emb_mask=delta_emb_mask if use_text_mod else None,
)
with enable_lora((self.proj_mlp,), activate_projmlp if train_partial_lora else model_config["sblock_lora"], latent_sblora_weight=latent_sblora_weight):
mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states))
if using_cond:
cond_lora_activate = model_config["use_condition_sblock_lora"]
with enable_lora(
(self.norm.linear,),
dit_activated=activate_norm if train_partial_lora else not cond_lora_activate, cond_activated=cond_lora_activate, latent_sblora_weight=condition_sblora_weight
):
residual_cond = condition_latents
norm_condition_latents, cond_gate = self.norm(condition_latents, emb=cond_temb)
with enable_lora(
(self.proj_mlp,),
dit_activated=activate_projmlp if train_partial_lora else not cond_lora_activate, cond_activated=cond_lora_activate, latent_sblora_weight=condition_sblora_weight
):
mlp_cond_hidden_states = self.act_mlp(self.proj_mlp(norm_condition_latents))
attn_output = attn_forward(
self.attn,
model_config=model_config,
hidden_states=norm_hidden_states,
image_rotary_emb=image_rotary_emb,
last_attn_map=last_attn_map,
latent_height=latent_height,
store_attn_map=store_attn_map,
timestep=timestep,
latent_sblora_weight=latent_sblora_weight,
condition_sblora_weight=condition_sblora_weight,
**(
{
"condition_latents": norm_condition_latents,
"cond_rotary_emb": cond_rotary_emb if using_cond else None,
"text_cond_mask": text_cond_mask if using_cond else None,
}
if using_cond
else {}
),
)
if using_cond:
attn_output, cond_attn_output = attn_output
with enable_lora((self.proj_out,), activate_projout if train_partial_lora else model_config["sblock_lora"], latent_sblora_weight=latent_sblora_weight):
hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2)
# gate = (B, 1, 3072) or (B, S+, 3072)
hidden_states = gate * self.proj_out(hidden_states)
hidden_states = residual + hidden_states
if using_cond:
cond_lora_activate = model_config["use_condition_sblock_lora"]
with enable_lora(
(self.proj_out,),
dit_activated=activate_projout if train_partial_lora else not cond_lora_activate, cond_activated=cond_lora_activate, latent_sblora_weight=condition_sblora_weight
):
condition_latents = torch.cat([cond_attn_output, mlp_cond_hidden_states], dim=2)
cond_gate = cond_gate.unsqueeze(1)
condition_latents = cond_gate * self.proj_out(condition_latents)
condition_latents = residual_cond + condition_latents
if hidden_states.dtype == torch.float16:
hidden_states = hidden_states.clip(-65504, 65504)
return hidden_states if not using_cond else (hidden_states, condition_latents)
|