File size: 39,288 Bytes
f0dfe23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
# Copyright 2024 Black Forest Labs and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import torch
from typing import List, Union, Optional, Tuple, Dict, Any, Callable
from diffusers.models.attention_processor import Attention, F
from .lora_controller import enable_lora
from einops import rearrange
import math
from diffusers.models.embeddings import apply_rotary_emb


def scaled_dot_product_attention(query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False, scale=None) -> torch.Tensor:
    # Efficient implementation equivalent to the following:
    L, S = query.size(-2), key.size(-2)
    B = query.size(0)
    scale_factor = 1 / math.sqrt(query.size(-1)) if scale is None else scale
    attn_bias = torch.zeros(B, 1, L, S, dtype=query.dtype, device=query.device)
    if is_causal:
        assert attn_mask is None
        assert False
        temp_mask = torch.ones(L, S, dtype=torch.bool).tril(diagonal=0)
        attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf"))
        attn_bias.to(query.dtype)

    if attn_mask is not None:
        if attn_mask.dtype == torch.bool:
            attn_bias.masked_fill_(attn_mask.logical_not(), float("-inf"))
        else:
            attn_bias += attn_mask
    attn_weight = query @ key.transpose(-2, -1) * scale_factor
    attn_weight += attn_bias.to(attn_weight.device)
    attn_weight = torch.softmax(attn_weight, dim=-1)

    return torch.dropout(attn_weight, dropout_p, train=True) @ value, attn_weight

def attn_forward(
    attn: Attention,
    hidden_states: torch.FloatTensor,
    encoder_hidden_states: torch.FloatTensor = None,
    condition_latents: torch.FloatTensor = None,
    text_cond_mask: Optional[torch.FloatTensor] = None,
    attention_mask: Optional[torch.FloatTensor] = None,
    image_rotary_emb: Optional[torch.Tensor] = None,
    cond_rotary_emb: Optional[torch.Tensor] = None,
    model_config: Optional[Dict[str, Any]] = {},
    store_attn_map: bool = False,
    latent_height: Optional[int] = None,
    timestep: Optional[torch.Tensor] = None,
    last_attn_map: Optional[torch.Tensor] = None,
    condition_sblora_weight: Optional[float] = None,
    latent_sblora_weight: Optional[float] = None,
) -> torch.FloatTensor:
    batch_size, _, _ = (
        hidden_states.shape
        if encoder_hidden_states is None
        else encoder_hidden_states.shape
    )
    
    is_sblock = encoder_hidden_states is None
    is_dblock = not is_sblock
    
    with enable_lora(
        (attn.to_q, attn.to_k, attn.to_v), 
        (is_dblock and model_config["latent_lora"]) or (is_sblock and model_config["sblock_lora"]), latent_sblora_weight=latent_sblora_weight
    ):
        query = attn.to_q(hidden_states)
        key = attn.to_k(hidden_states)
        value = attn.to_v(hidden_states)
         
    inner_dim = key.shape[-1]
    head_dim = inner_dim // attn.heads

    query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
    key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
    value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

    if attn.norm_q is not None:
        query = attn.norm_q(query)
    if attn.norm_k is not None:
        key = attn.norm_k(key)

    # the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states`
    if encoder_hidden_states is not None:
        # `context` projections.
        with enable_lora((attn.add_q_proj, attn.add_k_proj, attn.add_v_proj), model_config["text_lora"]):
            encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
            encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
            encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)

        encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        if attn.norm_added_q is not None:
            encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
        if attn.norm_added_k is not None:
            encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj)

        # attention
        query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
        key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
        value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)

    if image_rotary_emb is not None:
        query = apply_rotary_emb(query, image_rotary_emb)
        key = apply_rotary_emb(key, image_rotary_emb)

    if condition_latents is not None:
        assert condition_latents.shape[0] == batch_size
        cond_length = condition_latents.shape[1]

        cond_lora_activate = (is_dblock and model_config["use_condition_dblock_lora"]) or (is_sblock and model_config["use_condition_sblock_lora"])
        with enable_lora(
            (attn.to_q, attn.to_k, attn.to_v), 
            dit_activated=not cond_lora_activate, cond_activated=cond_lora_activate, latent_sblora_weight=condition_sblora_weight  #TODO implementation for condition lora not share
        ):
            cond_query = attn.to_q(condition_latents)
            cond_key = attn.to_k(condition_latents)
            cond_value = attn.to_v(condition_latents)

        cond_query = cond_query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        cond_key = cond_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        cond_value = cond_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        if attn.norm_q is not None:
            cond_query = attn.norm_q(cond_query)
        if attn.norm_k is not None:
            cond_key = attn.norm_k(cond_key)

        if cond_rotary_emb is not None:
            cond_query = apply_rotary_emb(cond_query, cond_rotary_emb)
            cond_key = apply_rotary_emb(cond_key, cond_rotary_emb)

        if model_config.get("text_cond_attn", False):
            if encoder_hidden_states is not None:
                assert text_cond_mask is not None
                img_length = hidden_states.shape[1]
                seq_length = encoder_hidden_states_query_proj.shape[2]
                assert len(text_cond_mask.shape) == 2 or len(text_cond_mask.shape) == 3
                if len(text_cond_mask.shape) == 2:
                    text_cond_mask = text_cond_mask.unsqueeze(-1)
                N = text_cond_mask.shape[-1] # num_condition
            else:
                raise NotImplementedError()

            query = torch.cat([query, cond_query], dim=2) # (B, 24, S+HW+NC)
            key = torch.cat([key, cond_key], dim=2)
            value = torch.cat([value, cond_value], dim=2)
            
            assert query.shape[2] == key.shape[2]
            assert query.shape[2] == cond_length + img_length + seq_length

            attention_mask = torch.ones(batch_size, 1, query.shape[2], key.shape[2], device=query.device, dtype=torch.bool)
            attention_mask[..., -cond_length:, :-cond_length] = False
            attention_mask[..., :-cond_length, -cond_length:] = False

            if encoder_hidden_states is not None:
                tokens_per_cond = cond_length // N
                for i in range(batch_size):
                    for j in range(N):
                        start = seq_length + img_length + tokens_per_cond * j
                        attention_mask[i, 0, :seq_length, start:start+tokens_per_cond] = text_cond_mask[i, :, j].unsqueeze(-1)

        elif model_config.get("union_cond_attn", False):
            query = torch.cat([query, cond_query], dim=2) # (B, 24, S+HW+NC)
            key = torch.cat([key, cond_key], dim=2)
            value = torch.cat([value, cond_value], dim=2)
            
            attention_mask = torch.ones(batch_size, 1, query.shape[2], key.shape[2], device=query.device, dtype=torch.bool)
            cond_length = condition_latents.shape[1]
            assert len(text_cond_mask.shape) == 2 or len(text_cond_mask.shape) == 3
            if len(text_cond_mask.shape) == 2:
                text_cond_mask = text_cond_mask.unsqueeze(-1)
            N = text_cond_mask.shape[-1] # num_condition
            tokens_per_cond = cond_length // N
            
            seq_length = 0
            if encoder_hidden_states is not None:
                seq_length = encoder_hidden_states_query_proj.shape[2]
                img_length = hidden_states.shape[1]
            else:
                seq_length = 128 # TODO, pass it here
                img_length = hidden_states.shape[1] - seq_length
            
            if not model_config.get("cond_cond_cross_attn", True):
                # no cross attention between different conds
                cond_start = seq_length + img_length
                attention_mask[:, :, cond_start:, cond_start:] = False
                
                for j in range(N):
                    start = cond_start + tokens_per_cond * j
                    end = cond_start + tokens_per_cond * (j + 1)
                    attention_mask[..., start:end, start:end] = True
            
            # double block
            if encoder_hidden_states is not None:
                
                # no cross attention
                attention_mask[..., :-cond_length, -cond_length:] = False

                if model_config.get("use_attention_double", False) and last_attn_map is not None:
                    attention_mask = torch.zeros(batch_size, 1, query.shape[2], key.shape[2], device=query.device, dtype=torch.bfloat16)
                    last_attn_map = last_attn_map.to(query.device)
                    attention_mask[..., seq_length:-cond_length, :seq_length] = torch.log(last_attn_map/last_attn_map.mean()*model_config["use_atten_lambda"]).view(-1, seq_length)
                
            # single block
            else:
                # print(last_attn_map)
                if model_config.get("use_attention_single", False) and last_attn_map is not None:
                    attention_mask = torch.zeros(batch_size, 1, query.shape[2], key.shape[2], device=query.device, dtype=torch.bfloat16)
                    attention_mask[..., :seq_length, -cond_length:] = float('-inf')
                    # 确保 use_atten_lambda 是列表
                    use_atten_lambdas = model_config["use_atten_lambda"] if len(model_config["use_atten_lambda"])!=1 else model_config["use_atten_lambda"] * (N+1)
                    attention_mask[..., -cond_length:, seq_length:-cond_length] = math.log(use_atten_lambdas[0])
                    last_attn_map = last_attn_map.to(query.device)
                    
                    cond2latents = []
                    for i in range(batch_size):
                        AM = last_attn_map[i] # (H, W, S)
                        for j in range(N):
                            start = seq_length + img_length + tokens_per_cond * j
                            mask = text_cond_mask[i, :, j] # (S,)
                            weighted_AM = AM * mask.unsqueeze(0).unsqueeze(0)  # 扩展 mask 维度以匹配 AM

                            cond2latent = weighted_AM.mean(-1)
                            if model_config.get("attention_norm", "mean") == "max":
                                cond2latent = cond2latent / cond2latent.max()  # 归一化
                            else:
                                cond2latent = cond2latent / cond2latent.mean()  # 归一化
                            cond2latent = cond2latent.view(-1,) # (WH,)

                            # 使用对应 condition 的 lambda 值
                            current_lambda = use_atten_lambdas[j+1]
                            # 将 cond2latent 复制到 attention_mask[i, 0, :seq_length, start:start+tokens_per_cond]
                            attention_mask[i, 0, seq_length:-cond_length, start:start+tokens_per_cond] = torch.log(current_lambda * cond2latent.unsqueeze(-1))
                            
                            # 将 text_cond_mask[i, :, j].unsqueeze(-1) 为 true 的位置设置为当前 lambda 值
                            cond = mask.unsqueeze(-1).expand(-1, tokens_per_cond)
                            sub_mask = attention_mask[i, 0, :seq_length, start:start+tokens_per_cond]
                            attention_mask[i, 0, :seq_length, start:start+tokens_per_cond] = torch.where(cond, math.log(current_lambda), sub_mask)
                            cond2latents.append(
                                cond2latent.reshape(latent_height, -1).detach().cpu()
                            )
                    if store_attn_map:
                        if not hasattr(attn, "cond2latents"):
                            attn.cond2latents = []
                            attn.cond_timesteps = []
                        attn.cond2latents.append(torch.stack(cond2latents, dim=0)) # (N, H, W)
                        attn.cond_timesteps.append(timestep.cpu())

                pass
        else:
            raise NotImplementedError()
        if hasattr(attn, "c_factor"):
            assert False
            attention_mask = torch.zeros(
                query.shape[2], key.shape[2], device=query.device, dtype=query.dtype
            )
            bias = torch.log(attn.c_factor[0])
            attention_mask[-cond_length:, :-cond_length] = bias
            attention_mask[:-cond_length, -cond_length:] = bias

    ####################################################################################################
    if store_attn_map and encoder_hidden_states is not None:
        seq_length = encoder_hidden_states_query_proj.shape[2]
        img_length = hidden_states.shape[1]
        hidden_states, attention_probs = scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )
        # (B, 24, S+HW, S+HW) -> (B, 24, HW, S)
        t2i_attention_probs = attention_probs[:, :, seq_length:seq_length+img_length, :seq_length]
        # (B, 24, S+HW, S+HW) -> (B, 24, S, HW) -> (B, 24, HW, S)
        i2t_attention_probs = attention_probs[:, :, :seq_length, seq_length:seq_length+img_length].transpose(-1, -2)
        
        if not hasattr(attn, "attn_maps"):
            attn.attn_maps = []
            attn.timestep = []

        attn.attn_maps.append(
            (
                rearrange(t2i_attention_probs, 'B attn_head (H W) attn_dim -> B attn_head H W attn_dim', H=latent_height),
                rearrange(i2t_attention_probs, 'B attn_head (H W) attn_dim -> B attn_head H W attn_dim', H=latent_height),
            )
        )

        attn.timestep.append(timestep.cpu())
        has_nan = torch.isnan(hidden_states).any().item()
        if has_nan:
            print("[attn_forward] detect nan hidden_states in store_attn_map")
    else:
        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )
        has_nan = torch.isnan(hidden_states).any().item()
        if has_nan:
            print("[attn_forward] detect nan hidden_states")
    ####################################################################################################
    hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim).to(query.dtype)

    if encoder_hidden_states is not None:
        if condition_latents is not None:
            encoder_hidden_states, hidden_states, condition_latents = (
                hidden_states[:, : encoder_hidden_states.shape[1]],
                hidden_states[
                    :, encoder_hidden_states.shape[1] : -condition_latents.shape[1]
                ],
                hidden_states[:, -condition_latents.shape[1] :],
            )
            if model_config.get("latent_cond_by_text_attn", False):
                # hidden_states += add_latent # (B, HW, D)
                hidden_states = new_hidden_states # (B, HW, D)
            
        else:
            encoder_hidden_states, hidden_states = (
                hidden_states[:, : encoder_hidden_states.shape[1]],
                hidden_states[:, encoder_hidden_states.shape[1] :],
            )


        with enable_lora((attn.to_out[0],), model_config["latent_lora"]):
            hidden_states = attn.to_out[0](hidden_states) # linear proj
            hidden_states = attn.to_out[1](hidden_states) # dropout
        with enable_lora((attn.to_add_out,), model_config["text_lora"]):
            encoder_hidden_states = attn.to_add_out(encoder_hidden_states)

        if condition_latents is not None:
            cond_lora_activate = model_config["use_condition_dblock_lora"]
            with enable_lora(
                (attn.to_out[0],), 
                dit_activated=not cond_lora_activate, cond_activated=cond_lora_activate,
            ):
                condition_latents = attn.to_out[0](condition_latents)
                condition_latents = attn.to_out[1](condition_latents)


        return (
            (hidden_states, encoder_hidden_states, condition_latents)
            if condition_latents is not None
            else (hidden_states, encoder_hidden_states)
        )
    elif condition_latents is not None:
        hidden_states, condition_latents = (
            hidden_states[:, : -condition_latents.shape[1]],
            hidden_states[:, -condition_latents.shape[1] :],
        )
        return hidden_states, condition_latents
    else:
        return hidden_states


def set_delta_by_start_end(
    start_ends, 
    src_delta_emb, src_delta_emb_pblock, 
    delta_emb, delta_emb_pblock, delta_emb_mask, 
):
    for (i, j, src_s, src_e, tar_s, tar_e) in start_ends:
        if src_delta_emb is not None:
            delta_emb[i, tar_s:tar_e] = src_delta_emb[j, src_s:src_e]
        if src_delta_emb_pblock is not None:
            delta_emb_pblock[i, tar_s:tar_e] = src_delta_emb_pblock[j, src_s:src_e]
        delta_emb_mask[i, tar_s:tar_e] = True
    return delta_emb, delta_emb_pblock, delta_emb_mask

def norm1_context_forward(
    self,
    x: torch.Tensor,
    condition_latents: Optional[torch.Tensor] = None, 
    timestep: Optional[torch.Tensor] = None,
    class_labels: Optional[torch.LongTensor] = None,
    hidden_dtype: Optional[torch.dtype] = None,
    emb: Optional[torch.Tensor] = None,
    delta_emb: Optional[torch.Tensor] = None,
    delta_emb_cblock: Optional[torch.Tensor] = None,
    delta_emb_mask: Optional[torch.Tensor] = None,
    delta_start_ends = None,
    mod_adapter = None,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
    batch_size, seq_length = x.shape[:2]
    
    if mod_adapter is not None:
        assert False

    if delta_emb is None:
        emb = self.linear(self.silu(emb)) # (B, 3072) -> (B, 18432)
        emb = emb.unsqueeze(1) # (B, 1, 18432)
        shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb.chunk(6, dim=-1) # (B, 1, 3072)
        x = self.norm(x) * (1 + scale_msa) + shift_msa # (B, 1, 3072)
        return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
    else:
        # (B, 3072) > (B, 18432) -> (B, S, 18432)
        emb_orig = self.linear(self.silu(emb)).unsqueeze(1).expand((-1, seq_length, -1))
        # (B, 3072) -> (B, 1, 3072) -> (B, S, 3072) -> (B, S, 18432)
        if delta_emb_cblock is None:
            emb_new = self.linear(self.silu(emb.unsqueeze(1) + delta_emb))
        else:
            emb_new = self.linear(self.silu(emb.unsqueeze(1) + delta_emb + delta_emb_cblock))
        emb = torch.where(delta_emb_mask.unsqueeze(-1), emb_new, emb_orig) # (B, S, 18432)
        shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb.chunk(6, dim=-1) # (B, S, 3072)
        x = self.norm(x) * (1 + scale_msa) + shift_msa # (B, S, 3072)
        return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
        

def norm1_forward(
    self,
    x: torch.Tensor,
    timestep: Optional[torch.Tensor] = None,
    class_labels: Optional[torch.LongTensor] = None,
    hidden_dtype: Optional[torch.dtype] = None,
    emb: Optional[torch.Tensor] = None,
    delta_emb: Optional[torch.Tensor] = None,
    delta_emb_cblock: Optional[torch.Tensor] = None,
    delta_emb_mask: Optional[torch.Tensor] = None,
    t2i_attn_map: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
    if delta_emb is None:
        emb = self.linear(self.silu(emb)) # (B, 3072) -> (B, 18432)
        emb = emb.unsqueeze(1) # (B, 1, 18432)
        shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb.chunk(6, dim=-1) # (B, 1, 3072)
        x = self.norm(x) * (1 + scale_msa) + shift_msa # (B, 1, 3072)
        return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
    else:
        raise NotImplementedError()
        batch_size, HW = x.shape[:2]
        seq_length = t2i_attn_map.shape[-1]
        # (B, 3072) > (B, 18432) -> (B, S, 18432)
        emb_orig = self.linear(self.silu(emb)).unsqueeze(1).expand((-1, seq_length, -1))
        # (B, 3072) -> (B, 1, 3072) -> (B, S, 3072) -> (B, S, 18432)
        if delta_emb_cblock is None:
            emb_new = self.linear(self.silu(emb.unsqueeze(1) + delta_emb))
        else:
            emb_new = self.linear(self.silu(emb.unsqueeze(1) + delta_emb + delta_emb_cblock))
        # attn_weight (B, HW, S)
        emb = torch.where(delta_emb_mask.unsqueeze(-1), emb_new, emb_orig) # (B, S, 18432)
        emb = t2i_attn_map @ emb    # (B, HW, 18432)
        shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb.chunk(6, dim=-1) # (B, HW, 3072)
        x = self.norm(x) * (1 + scale_msa) + shift_msa # (B, HW, 3072)
        return x, gate_msa, shift_mlp, scale_mlp, gate_mlp


def block_forward(
    self,
    hidden_states: torch.FloatTensor,
    encoder_hidden_states: torch.FloatTensor,
    condition_latents: torch.FloatTensor,
    temb: torch.FloatTensor,
    cond_temb: torch.FloatTensor,
    text_cond_mask: Optional[torch.FloatTensor] = None,
    delta_emb: Optional[torch.FloatTensor] = None,
    delta_emb_cblock: Optional[torch.FloatTensor] = None,
    delta_emb_mask: Optional[torch.Tensor] = None,
    delta_start_ends = None,
    cond_rotary_emb=None,
    image_rotary_emb=None,
    model_config: Optional[Dict[str, Any]] = {},
    store_attn_map: bool = False,
    use_text_mod: bool = True,
    use_img_mod: bool = False,
    mod_adapter = None,
    latent_height: Optional[int] = None,
    timestep: Optional[torch.Tensor] = None,
    last_attn_map: Optional[torch.Tensor] = None,
):
    batch_size = hidden_states.shape[0]
    use_cond = condition_latents is not None

    train_partial_latent_lora = model_config.get("train_partial_latent_lora", False)
    train_partial_text_lora = model_config.get("train_partial_text_lora", False)
    if train_partial_latent_lora:
        train_partial_latent_lora_layers = model_config.get("train_partial_latent_lora_layers", "")
        activate_norm1 = activate_ff = True
        if "norm1" not in train_partial_latent_lora_layers:
            activate_norm1 = False
        if "ff" not in train_partial_latent_lora_layers:
            activate_ff = False
    
    if train_partial_text_lora:
        train_partial_text_lora_layers = model_config.get("train_partial_text_lora_layers", "")
        activate_norm1_context = activate_ff_context = True
        if "norm1" not in train_partial_text_lora_layers:
            activate_norm1_context = False
        if "ff" not in train_partial_text_lora_layers:
            activate_ff_context = False
    
    if use_cond:
        cond_lora_activate = model_config["use_condition_dblock_lora"]
        with enable_lora(
            (self.norm1.linear,), 
            dit_activated=activate_norm1 if train_partial_latent_lora else not cond_lora_activate, cond_activated=cond_lora_activate,
        ):
            norm_condition_latents, cond_gate_msa, cond_shift_mlp, cond_scale_mlp, cond_gate_mlp = (
                norm1_forward(
                    self.norm1,
                    condition_latents,
                    emb=cond_temb, 
                )
            )
    delta_emb_img = delta_emb_img_cblock = None
    if use_img_mod and use_text_mod:
        if delta_emb is not None:
            delta_emb_img, delta_emb = delta_emb.chunk(2, dim=-1)
        if delta_emb_cblock is not None:
            delta_emb_img_cblock, delta_emb_cblock = delta_emb_cblock.chunk(2, dim=-1)

    with enable_lora((self.norm1.linear,), activate_norm1 if train_partial_latent_lora else model_config["latent_lora"]):
        if use_img_mod and encoder_hidden_states is not None:
            with torch.no_grad():
                attn = self.attn

                norm_img = self.norm1(hidden_states, emb=temb)[0]
                norm_text = self.norm1_context(encoder_hidden_states, emb=temb)[0]
                
                img_query = attn.to_q(norm_img)
                img_key = attn.to_k(norm_img)
                text_query = attn.add_q_proj(norm_text)
                text_key = attn.add_k_proj(norm_text)

                inner_dim = img_key.shape[-1]
                head_dim = inner_dim // attn.heads

                img_query = img_query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)   # (B, N, HW, D)
                img_key = img_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)       # (B, N, HW, D)
                text_query = text_query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # (B, N, S, D)
                text_key = text_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)     # (B, N, S, D)

                if attn.norm_q is not None:
                    img_query = attn.norm_q(img_query)
                if attn.norm_added_q is not None:
                    text_query = attn.norm_added_q(text_query)
                if attn.norm_k is not None:
                    img_key = attn.norm_k(img_key)
                if attn.norm_added_k is not None:
                    text_key = attn.norm_added_k(text_key)
                
                query = torch.cat([text_query, img_query], dim=2) # (B, N, S+HW, D)
                key = torch.cat([text_key, img_key], dim=2)       # (B, N, S+HW, D)
                if image_rotary_emb is not None:
                    query = apply_rotary_emb(query, image_rotary_emb)
                    key = apply_rotary_emb(key, image_rotary_emb)

                seq_length = text_query.shape[2]

                scale_factor = 1 / math.sqrt(query.size(-1))
                t2i_attn_map = query @ key.transpose(-2, -1) * scale_factor # (B, N, S+HW, S+HW)
                t2i_attn_map = t2i_attn_map.mean(1)[:, seq_length:, :seq_length] # (B, S+HW, S+HW) -> (B, HW, S)
                t2i_attn_map = torch.softmax(t2i_attn_map, dim=-1) # (B, HW, S)

        else:
            t2i_attn_map = None

        norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
            norm1_forward(
                self.norm1,
                hidden_states,
                emb=temb,
                delta_emb=delta_emb_img,
                delta_emb_cblock=delta_emb_img_cblock,
                delta_emb_mask=delta_emb_mask,
                t2i_attn_map=t2i_attn_map,
            )
        )
    # Modulation for double block
    with enable_lora((self.norm1_context.linear,), activate_norm1_context if train_partial_text_lora else model_config["text_lora"]):
        norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = (
            norm1_context_forward(
                self.norm1_context, 
                encoder_hidden_states, 
                emb=temb, 
                delta_emb=delta_emb if use_text_mod else None,
                delta_emb_cblock=delta_emb_cblock if use_text_mod else None,
                delta_emb_mask=delta_emb_mask if use_text_mod else None,
                delta_start_ends=delta_start_ends if use_text_mod else None,
                mod_adapter=mod_adapter,
                condition_latents=condition_latents,
            )
        )

    # Attention.
    result = attn_forward(
        self.attn,
        model_config=model_config,
        hidden_states=norm_hidden_states,
        encoder_hidden_states=norm_encoder_hidden_states,
        condition_latents=norm_condition_latents if use_cond else None,
        text_cond_mask=text_cond_mask if use_cond else None,
        image_rotary_emb=image_rotary_emb,
        cond_rotary_emb=cond_rotary_emb if use_cond else None,
        store_attn_map=store_attn_map,
        latent_height=latent_height,
        timestep=timestep,
        last_attn_map=last_attn_map,
    )
    attn_output, context_attn_output = result[:2]
    cond_attn_output = result[2] if use_cond else None

    # Process attention outputs for the `hidden_states`.
    # 1. hidden_states
    attn_output = gate_msa * attn_output # NOTE: changed by img mod
    hidden_states = hidden_states + attn_output
    # 2. encoder_hidden_states
    context_attn_output = c_gate_msa * context_attn_output # NOTE: changed by delta_temb
    encoder_hidden_states = encoder_hidden_states + context_attn_output
    # 3. condition_latents
    if use_cond:
        cond_attn_output = cond_gate_msa * cond_attn_output  # NOTE: changed by img mod
        condition_latents = condition_latents + cond_attn_output
        if model_config.get("add_cond_attn", False):
            hidden_states += cond_attn_output

    # LayerNorm + MLP.
    # 1. hidden_states
    norm_hidden_states = self.norm2(hidden_states)
    norm_hidden_states = (
        norm_hidden_states * (1 + scale_mlp) + shift_mlp  # NOTE: changed by img mod
    )
    # 2. encoder_hidden_states
    norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
    norm_encoder_hidden_states = (
        norm_encoder_hidden_states * (1 + c_scale_mlp) + c_shift_mlp  # NOTE: changed by delta_temb
    )
    # 3. condition_latents
    if use_cond:
        norm_condition_latents = self.norm2(condition_latents)
        norm_condition_latents = (
            norm_condition_latents * (1 + cond_scale_mlp) + cond_shift_mlp # NOTE: changed by img mod
        )

    # Feed-forward.
    with enable_lora((self.ff.net[2],), activate_ff if train_partial_latent_lora else model_config["latent_lora"]):
        # 1. hidden_states
        ff_output = self.ff(norm_hidden_states)
        ff_output = gate_mlp * ff_output  # NOTE: changed by img mod
    # 2. encoder_hidden_states
    with enable_lora((self.ff_context.net[2],), activate_ff_context if train_partial_text_lora else model_config["text_lora"]):
        context_ff_output = self.ff_context(norm_encoder_hidden_states)
        context_ff_output = c_gate_mlp * context_ff_output  # NOTE: changed by delta_temb
    # 3. condition_latents
    if use_cond:
        cond_lora_activate = model_config["use_condition_dblock_lora"]
        with enable_lora(
            (self.ff.net[2],), 
            dit_activated=activate_ff if train_partial_latent_lora else not cond_lora_activate, cond_activated=cond_lora_activate,
        ):
            cond_ff_output = self.ff(norm_condition_latents)
            cond_ff_output = cond_gate_mlp * cond_ff_output  # NOTE: changed by img mod

    # Process feed-forward outputs.
    hidden_states = hidden_states + ff_output
    encoder_hidden_states = encoder_hidden_states + context_ff_output
    if use_cond:
        condition_latents = condition_latents + cond_ff_output

    # Clip to avoid overflow.
    if encoder_hidden_states.dtype == torch.float16:
        encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504)

    return encoder_hidden_states, hidden_states, condition_latents if use_cond else None

def single_norm_forward(
    self,
    x: torch.Tensor,
    timestep: Optional[torch.Tensor] = None,
    class_labels: Optional[torch.LongTensor] = None,
    hidden_dtype: Optional[torch.dtype] = None,
    emb: Optional[torch.Tensor] = None,
    delta_emb: Optional[torch.Tensor] = None,
    delta_emb_cblock: Optional[torch.Tensor] = None,
    delta_emb_mask: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
    if delta_emb is None:
        emb = self.linear(self.silu(emb)) # (B, 3072) -> (B, 9216)
        emb = emb.unsqueeze(1) # (B, 1, 9216)
        shift_msa, scale_msa, gate_msa = emb.chunk(3, dim=-1) # (B, 1, 3072)
        x = self.norm(x) * (1 + scale_msa) + shift_msa # (B, S, 3072) * (B, 1, 3072)
        return x, gate_msa
    else:
        img_text_seq_length = x.shape[1] # S+
        text_seq_length = delta_emb_mask.shape[1] # S
        # (B, 3072) -> (B, 9216) -> (B, S+, 9216)
        emb_orig = self.linear(self.silu(emb)).unsqueeze(1).expand((-1, img_text_seq_length, -1))
        # (B, 3072) -> (B, 1, 3072) -> (B, S, 3072) -> (B, S, 9216)
        if delta_emb_cblock is None:
            emb_new = self.linear(self.silu(emb.unsqueeze(1) + delta_emb))
        else:
            emb_new = self.linear(self.silu(emb.unsqueeze(1) + delta_emb + delta_emb_cblock))

        emb_text = torch.where(delta_emb_mask.unsqueeze(-1), emb_new, emb_orig[:, :text_seq_length]) # (B, S, 9216)
        emb_img = emb_orig[:, text_seq_length:] # (B, s, 9216)
        emb = torch.cat([emb_text, emb_img], dim=1) # (B, S+, 9216)

        shift_msa, scale_msa, gate_msa = emb.chunk(3, dim=-1) # (B, S+, 3072)
        x = self.norm(x) * (1 + scale_msa) + shift_msa # (B, S+, 3072)
        return x, gate_msa


def single_block_forward(
    self,
    hidden_states: torch.FloatTensor,
    temb: torch.FloatTensor,
    image_rotary_emb=None,
    condition_latents: torch.FloatTensor = None,
    text_cond_mask: torch.FloatTensor = None,
    cond_temb: torch.FloatTensor = None,
    delta_emb: Optional[torch.FloatTensor] = None,
    delta_emb_cblock: Optional[torch.FloatTensor] = None,
    delta_emb_mask: Optional[torch.Tensor] = None,
    use_text_mod: bool = True,
    use_img_mod: bool = False,
    cond_rotary_emb=None,
    latent_height: Optional[int] = None,
    timestep: Optional[torch.Tensor] = None,
    store_attn_map: bool = False,
    model_config: Optional[Dict[str, Any]] = {},
    last_attn_map: Optional[torch.Tensor] = None,
    latent_sblora_weight=None,
    condition_sblora_weight=None,
):

    using_cond = condition_latents is not None
    residual = hidden_states
    
    train_partial_lora = model_config.get("train_partial_lora", False)
    if train_partial_lora:
        train_partial_lora_layers = model_config.get("train_partial_lora_layers", "")
        activate_norm = activate_projmlp = activate_projout = True
        
        if "norm" not in train_partial_lora_layers:
            activate_norm = False
        if "projmlp" not in train_partial_lora_layers:
            activate_projmlp = False
        if "projout" not in train_partial_lora_layers:
            activate_projout = False

    with enable_lora((self.norm.linear,), activate_norm if train_partial_lora else model_config["sblock_lora"], latent_sblora_weight=latent_sblora_weight):
        # Modulation for single block
        norm_hidden_states, gate = single_norm_forward(
            self.norm, 
            hidden_states, 
            emb=temb,
            delta_emb=delta_emb if use_text_mod else None,
            delta_emb_cblock=delta_emb_cblock if use_text_mod else None,
            delta_emb_mask=delta_emb_mask if use_text_mod else None,
        )
    with enable_lora((self.proj_mlp,), activate_projmlp if train_partial_lora else model_config["sblock_lora"], latent_sblora_weight=latent_sblora_weight):
        mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states))
    if using_cond:
        cond_lora_activate = model_config["use_condition_sblock_lora"]
        with enable_lora(
            (self.norm.linear,), 
            dit_activated=activate_norm if train_partial_lora else not cond_lora_activate, cond_activated=cond_lora_activate, latent_sblora_weight=condition_sblora_weight
        ):
            residual_cond = condition_latents
            norm_condition_latents, cond_gate = self.norm(condition_latents, emb=cond_temb)
        with enable_lora(
            (self.proj_mlp,), 
            dit_activated=activate_projmlp if train_partial_lora else not cond_lora_activate, cond_activated=cond_lora_activate, latent_sblora_weight=condition_sblora_weight
        ):
            mlp_cond_hidden_states = self.act_mlp(self.proj_mlp(norm_condition_latents))

    attn_output = attn_forward(
        self.attn,
        model_config=model_config,
        hidden_states=norm_hidden_states,
        image_rotary_emb=image_rotary_emb,
        last_attn_map=last_attn_map,
        latent_height=latent_height,
        store_attn_map=store_attn_map,
        timestep=timestep,
        latent_sblora_weight=latent_sblora_weight,
        condition_sblora_weight=condition_sblora_weight,
        **(
            {
                "condition_latents": norm_condition_latents,
                "cond_rotary_emb": cond_rotary_emb if using_cond else None,
                "text_cond_mask": text_cond_mask if using_cond else None,
            }
            if using_cond
            else {}
        ),
    )
    if using_cond:
        attn_output, cond_attn_output = attn_output

    with enable_lora((self.proj_out,), activate_projout if train_partial_lora else model_config["sblock_lora"], latent_sblora_weight=latent_sblora_weight):
        hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2)
        # gate = (B, 1, 3072) or (B, S+, 3072)
        hidden_states = gate * self.proj_out(hidden_states)
        hidden_states = residual + hidden_states
    if using_cond:
        cond_lora_activate = model_config["use_condition_sblock_lora"]
        with enable_lora(
            (self.proj_out,), 
            dit_activated=activate_projout if train_partial_lora else not cond_lora_activate, cond_activated=cond_lora_activate, latent_sblora_weight=condition_sblora_weight
        ):
            condition_latents = torch.cat([cond_attn_output, mlp_cond_hidden_states], dim=2)
            cond_gate = cond_gate.unsqueeze(1)
            condition_latents = cond_gate * self.proj_out(condition_latents)
            condition_latents = residual_cond + condition_latents

    if hidden_states.dtype == torch.float16:
        hidden_states = hidden_states.clip(-65504, 65504)

    return hidden_states if not using_cond else (hidden_states, condition_latents)