File size: 36,094 Bytes
f0dfe23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6dd16b4
f0dfe23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
205da37
f0dfe23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
205da37
f0dfe23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
# Copyright 2024 Black Forest Labs and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import torch
import yaml, os
from PIL import Image
from diffusers.pipelines import FluxPipeline
from typing import List, Union, Optional, Dict, Any, Callable
from src.flux.transformer import tranformer_forward
from src.flux.condition import Condition

from diffusers.pipelines.flux.pipeline_flux import (
    FluxPipelineOutput,
    calculate_shift,
    retrieve_timesteps,
    np,
)
from src.flux.pipeline_tools import (
    encode_prompt_with_clip_t5, tokenize_t5_prompt, clear_attn_maps, encode_vae_images
)

from src.flux.pipeline_tools import CustomFluxPipeline, load_modulation_adapter, decode_vae_images, \
    save_attention_maps, gather_attn_maps, clear_attn_maps, load_dit_lora, quantization

from src.utils.data_utils import pad_to_square, pad_to_target, pil2tensor, get_closest_ratio, get_aspect_ratios
from src.utils.modulation_utils import get_word_index, unpad_input_ids

def get_config(config_path: str = None):
    config_path = config_path or os.environ.get("XFL_CONFIG")
    if not config_path:
        return {}
    with open(config_path, "r") as f:
        config = yaml.safe_load(f)
    return config


def prepare_params(
    prompt: Union[str, List[str]] = None,
    prompt_2: Optional[Union[str, List[str]]] = None,
    height: Optional[int] = 512,
    width: Optional[int] = 512,
    num_inference_steps: int = 8,
    timesteps: List[int] = None,
    guidance_scale: float = 3.5,
    num_images_per_prompt: Optional[int] = 1,
    generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
    latents: Optional[torch.FloatTensor] = None,
    prompt_embeds: Optional[torch.FloatTensor] = None,
    pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
    output_type: Optional[str] = "pil",
    return_dict: bool = True,
    joint_attention_kwargs: Optional[Dict[str, Any]] = None,
    callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
    callback_on_step_end_tensor_inputs: List[str] = ["latents"],
    max_sequence_length: int = 512,
    verbose: bool = False,
    **kwargs: dict,
):
    return (
        prompt,
        prompt_2,
        height,
        width,
        num_inference_steps,
        timesteps,
        guidance_scale,
        num_images_per_prompt,
        generator,
        latents,
        prompt_embeds,
        pooled_prompt_embeds,
        output_type,
        return_dict,
        joint_attention_kwargs,
        callback_on_step_end,
        callback_on_step_end_tensor_inputs,
        max_sequence_length,
        verbose,
    )


def seed_everything(seed: int = 42):
    torch.backends.cudnn.deterministic = True
    torch.manual_seed(seed)
    np.random.seed(seed)


@torch.no_grad()
def generate(
    pipeline: FluxPipeline,
    vae_conditions: List[Condition] = None,
    config_path: str = None,
    model_config: Optional[Dict[str, Any]] = {},
    vae_condition_scale: float = 1.0,
    default_lora: bool = False,
    condition_pad_to: str = "square",
    condition_size: int = 512,
    text_cond_mask: Optional[torch.FloatTensor] = None,
    delta_emb: Optional[torch.FloatTensor] = None,
    delta_emb_pblock: Optional[torch.FloatTensor] = None,
    delta_emb_mask: Optional[torch.FloatTensor] = None,
    delta_start_ends = None,
    condition_latents = None,
    condition_ids = None,
    mod_adapter = None,
    store_attn_map: bool = False,
    vae_skip_iter: str = None,
    control_weight_lambda: str = None,
    double_attention: bool = False,
    single_attention: bool = False,
    ip_scale: str = None,
    use_latent_sblora_control: bool = False,
    latent_sblora_scale: str = None,
    use_condition_sblora_control: bool = False,
    condition_sblora_scale: str = None,
    idips = None,
    **params: dict,
):
    model_config = model_config or get_config(config_path).get("model", {})

    vae_skip_iter = model_config.get("vae_skip_iter", vae_skip_iter)
    double_attention = model_config.get("double_attention", double_attention)
    single_attention = model_config.get("single_attention", single_attention)
    control_weight_lambda = model_config.get("control_weight_lambda", control_weight_lambda)
    ip_scale = model_config.get("ip_scale", ip_scale)
    use_latent_sblora_control = model_config.get("use_latent_sblora_control", use_latent_sblora_control)
    use_condition_sblora_control = model_config.get("use_condition_sblora_control", use_condition_sblora_control)

    latent_sblora_scale = model_config.get("latent_sblora_scale", latent_sblora_scale)
    condition_sblora_scale = model_config.get("condition_sblora_scale", condition_sblora_scale)

    model_config["use_attention_double"] = False
    model_config["use_attention_single"] = False
    use_attention = False
    
    if idips is not None:
        if control_weight_lambda != "no":
            parts = control_weight_lambda.split(',')
            new_parts = []
            for part in parts:
                if ':' in part:
                    left, right = part.split(':')
                    values = right.split('/')
                    # 保存整体值
                    global_value = values[0]
                    id_value = values[1]
                    ip_value = values[2]
                    new_values = [global_value]
                    for is_id in idips:
                        if is_id:
                            new_values.append(id_value)
                        else:
                            new_values.append(ip_value)
                    new_part = f"{left}:{('/'.join(new_values))}"
                    new_parts.append(new_part)
                else:
                    new_parts.append(part)
            control_weight_lambda = ','.join(new_parts)

    if vae_condition_scale != 1:
        for name, module in pipeline.transformer.named_modules():
            if not name.endswith(".attn"):
                continue
            module.c_factor = torch.ones(1, 1) * vae_condition_scale

    self = pipeline
    (
        prompt,
        prompt_2,
        height,
        width,
        num_inference_steps,
        timesteps,
        guidance_scale,
        num_images_per_prompt,
        generator,
        latents,
        prompt_embeds,
        pooled_prompt_embeds,
        output_type,
        return_dict,
        joint_attention_kwargs,
        callback_on_step_end,
        callback_on_step_end_tensor_inputs,
        max_sequence_length,
        verbose,
    ) = prepare_params(**params)

    height = height or self.default_sample_size * self.vae_scale_factor
    width = width or self.default_sample_size * self.vae_scale_factor

    # 1. Check inputs. Raise error if not correct
    self.check_inputs(
        prompt,
        prompt_2,
        height,
        width,
        prompt_embeds=prompt_embeds,
        pooled_prompt_embeds=pooled_prompt_embeds,
        callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
        max_sequence_length=max_sequence_length,
    )

    self._guidance_scale = guidance_scale
    self._joint_attention_kwargs = joint_attention_kwargs
    self._interrupt = False

    # 2. Define call parameters
    if prompt is not None and isinstance(prompt, str):
        batch_size = 1
    elif prompt is not None and isinstance(prompt, list):
        batch_size = len(prompt)
    else:
        batch_size = prompt_embeds.shape[0]

    device = self._execution_device

    lora_scale = (
        self.joint_attention_kwargs.get("scale", None)
        if self.joint_attention_kwargs is not None
        else None
    )
    (
        t5_prompt_embeds,
        pooled_prompt_embeds,
        text_ids,
    ) = encode_prompt_with_clip_t5(
        self=self,
        prompt="" if self.text_encoder_2 is None else prompt,
        prompt_2=None,
        prompt_embeds=prompt_embeds,
        pooled_prompt_embeds=pooled_prompt_embeds,
        device=device,
        num_images_per_prompt=num_images_per_prompt,
        max_sequence_length=max_sequence_length,
        lora_scale=lora_scale,
    )

    # 4. Prepare latent variables
    num_channels_latents = self.transformer.config.in_channels // 4
    latents, latent_image_ids = self.prepare_latents(
        batch_size * num_images_per_prompt,
        num_channels_latents,
        height,
        width,
        pooled_prompt_embeds.dtype,
        device,
        generator,
        latents,
    )

    latent_height = height // 16

    # 5. Prepare timesteps
    sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
    image_seq_len = latents.shape[1]
    mu = calculate_shift(
        image_seq_len,
        self.scheduler.config.base_image_seq_len,
        self.scheduler.config.max_image_seq_len,
        self.scheduler.config.base_shift,
        self.scheduler.config.max_shift,
    )
    timesteps, num_inference_steps = retrieve_timesteps(
        self.scheduler,
        num_inference_steps,
        device,
        timesteps,
        sigmas,
        mu=mu,
    )
    num_warmup_steps = max(
        len(timesteps) - num_inference_steps * self.scheduler.order, 0
    )
    self._num_timesteps = len(timesteps)

    attn_map = None

    # 6. Denoising loop
    with self.progress_bar(total=num_inference_steps) as progress_bar:
        totalsteps = timesteps[0]
        if control_weight_lambda is not None:
            print("control_weight_lambda", control_weight_lambda)
            control_weight_lambda_schedule = []
            for scale_str in control_weight_lambda.split(','):
                time_region, scale = scale_str.split(':')
                start, end = time_region.split('-')
                scales = [float(s) for s in scale.split('/')]
                control_weight_lambda_schedule.append([(1-float(start))*totalsteps, (1-float(end))*totalsteps, scales])

        if ip_scale is not None:
            print("ip_scale", ip_scale)
            ip_scale_schedule = []
            for scale_str in ip_scale.split(','):
                time_region, scale = scale_str.split(':')
                start, end = time_region.split('-')
                ip_scale_schedule.append([(1-float(start))*totalsteps, (1-float(end))*totalsteps, float(scale)])

        if use_latent_sblora_control:
            if latent_sblora_scale is not None:
                print("latent_sblora_scale", latent_sblora_scale)
                latent_sblora_scale_schedule = []
                for scale_str in latent_sblora_scale.split(','):
                    time_region, scale = scale_str.split(':')
                    start, end = time_region.split('-')
                    latent_sblora_scale_schedule.append([(1-float(start))*totalsteps, (1-float(end))*totalsteps, float(scale)])
        
        if use_condition_sblora_control:
            if condition_sblora_scale is not None:
                print("condition_sblora_scale", condition_sblora_scale)
                condition_sblora_scale_schedule = []
                for scale_str in condition_sblora_scale.split(','):
                    time_region, scale = scale_str.split(':')
                    start, end = time_region.split('-')
                    condition_sblora_scale_schedule.append([(1-float(start))*totalsteps, (1-float(end))*totalsteps, float(scale)])


        if vae_skip_iter is not None:
            print("vae_skip_iter", vae_skip_iter)
            vae_skip_iter_schedule = []
            for scale_str in vae_skip_iter.split(','):
                time_region, scale = scale_str.split(':')
                start, end = time_region.split('-')
                vae_skip_iter_schedule.append([(1-float(start))*totalsteps, (1-float(end))*totalsteps, float(scale)])

        if control_weight_lambda is not None and attn_map is None:
            batch_size = latents.shape[0]
            latent_width = latents.shape[1]//latent_height
            attn_map = torch.ones(batch_size, latent_height, latent_width, 128, device=latents.device, dtype=torch.bfloat16)
            print("contol_weight_only", attn_map.shape)

        self.scheduler.set_begin_index(0)
        self.scheduler._init_step_index(0)
        for i, t in enumerate(timesteps):
            
            if control_weight_lambda is not None:
                cur_control_weight_lambda = []
                for start, end, scale in control_weight_lambda_schedule:
                    if t <= start and t >= end:
                        cur_control_weight_lambda = scale
                        break
                print(f"timestep:{t}, cur_control_weight_lambda:{cur_control_weight_lambda}")
               
                if cur_control_weight_lambda:
                    model_config["use_attention_single"] = True
                    use_attention = True
                    model_config["use_atten_lambda"] = cur_control_weight_lambda  
                else:
                    model_config["use_attention_single"] = False
                    use_attention = False
                     
            if self.interrupt:
                continue

            if isinstance(delta_emb, list):
                cur_delta_emb = delta_emb[i]
                cur_delta_emb_pblock = delta_emb_pblock[i]
                cur_delta_emb_mask = delta_emb_mask[i]
            else:
                cur_delta_emb = delta_emb
                cur_delta_emb_pblock = delta_emb_pblock
                cur_delta_emb_mask = delta_emb_mask


            # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
            timestep = t.expand(latents.shape[0]).to(latents.dtype) / 1000
            prompt_embeds = t5_prompt_embeds
            text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=prompt_embeds.dtype)

            # handle guidance
            if self.transformer.config.guidance_embeds:
                guidance = torch.tensor([guidance_scale], device=device)
                guidance = guidance.expand(latents.shape[0])
            else:
                guidance = None
            self.transformer.enable_lora()
            
            lora_weight  = 1
            if ip_scale is not None:
                lora_weight = 0
                for start, end, scale in ip_scale_schedule:
                    if t <= start and t >= end:
                        lora_weight = scale
                        break
                if lora_weight != 1: print(f"timestep:{t}, lora_weights:{lora_weight}")
            
            latent_sblora_weight = None
            if use_latent_sblora_control:
                if latent_sblora_scale is not None:
                    latent_sblora_weight = 0
                    for start, end, scale in latent_sblora_scale_schedule:
                        if t <= start and t >= end:
                            latent_sblora_weight = scale
                            break
                    if latent_sblora_weight != 1: print(f"timestep:{t}, latent_sblora_weight:{latent_sblora_weight}")
            
            condition_sblora_weight = None
            if use_condition_sblora_control:
                if condition_sblora_scale is not None:
                    condition_sblora_weight = 0
                    for start, end, scale in condition_sblora_scale_schedule:
                        if t <= start and t >= end:
                            condition_sblora_weight = scale
                            break
                    if condition_sblora_weight !=1: print(f"timestep:{t}, condition_sblora_weight:{condition_sblora_weight}")

            vae_skip_iter_t = False
            if vae_skip_iter is not None:
                for start, end, scale in vae_skip_iter_schedule:
                    if t <= start and t >= end:
                        vae_skip_iter_t = bool(scale)
                        break
                if vae_skip_iter_t:
                    print(f"timestep:{t}, skip vae:{vae_skip_iter_t}")               

            noise_pred = tranformer_forward(
                self.transformer,
                model_config=model_config,
                # Inputs of the condition (new feature)
                text_cond_mask=text_cond_mask,
                delta_emb=cur_delta_emb,
                delta_emb_pblock=cur_delta_emb_pblock,
                delta_emb_mask=cur_delta_emb_mask,
                delta_start_ends=delta_start_ends,
                condition_latents=None if vae_skip_iter_t else condition_latents,
                condition_ids=None if vae_skip_iter_t else condition_ids,
                condition_type_ids=None,
                # Inputs to the original transformer
                hidden_states=latents,
                # YiYi notes: divide it by 1000 for now because we scale it by 1000 in the transforme rmodel (we should not keep it but I want to keep the inputs same for the model for testing)
                timestep=timestep,
                guidance=guidance,
                pooled_projections=pooled_prompt_embeds,
                encoder_hidden_states=prompt_embeds,
                txt_ids=text_ids,
                img_ids=latent_image_ids,
                joint_attention_kwargs={'scale': lora_weight, "latent_sblora_weight": latent_sblora_weight, "condition_sblora_weight": condition_sblora_weight}, 
                store_attn_map=use_attention,
                last_attn_map=attn_map if cur_control_weight_lambda else None,
                use_text_mod=model_config["modulation"]["use_text_mod"],
                use_img_mod=model_config["modulation"]["use_img_mod"],
                mod_adapter=mod_adapter,
                latent_height=latent_height,
                return_dict=False,
            )[0]

            if use_attention:
                attn_maps, _ = gather_attn_maps(self.transformer, clear=True)

            # compute the previous noisy sample x_t -> x_t-1
            latents_dtype = latents.dtype
            latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]

            if latents.dtype != latents_dtype:
                if torch.backends.mps.is_available():
                    # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
                    latents = latents.to(latents_dtype)

            if callback_on_step_end is not None:
                callback_kwargs = {}
                for k in callback_on_step_end_tensor_inputs:
                    callback_kwargs[k] = locals()[k]
                callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                latents = callback_outputs.pop("latents", latents)
                prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)

            # call the callback, if provided
            if i == len(timesteps) - 1 or (
                (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
            ):
                progress_bar.update()

    if output_type == "latent":
        image = latents

    else:
        latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
        latents = (
            latents / self.vae.config.scaling_factor
        ) + self.vae.config.shift_factor
        image = self.vae.decode(latents, return_dict=False)[0]
        image = self.image_processor.postprocess(image, output_type=output_type)

    # Offload all models
    self.maybe_free_model_hooks()

    self.transformer.enable_lora()

    if vae_condition_scale != 1:
        for name, module in pipeline.transformer.named_modules():
            if not name.endswith(".attn"):
                continue
            del module.c_factor

    if not return_dict:
        return (image,)

    return FluxPipelineOutput(images=image)


@torch.no_grad()
def generate_from_test_sample(
    test_sample, pipe, config, 
    num_images=1, 
    num_inference_steps = 8,
    vae_skip_iter: str = None, 
    target_height: int = None,
    target_width: int = None,
    seed: int = 42,
    control_weight_lambda: str = None,
    double_attention: bool = False,
    single_attention: bool = False,
    ip_scale: str = None,
    use_latent_sblora_control: bool = False,
    latent_sblora_scale: str = None,
    use_condition_sblora_control: bool = False,
    condition_sblora_scale: str = None,
    use_idip = False,
    **kargs
):
    target_size = config["train"]["dataset"]["val_target_size"]
    condition_size = config["train"]["dataset"].get("val_condition_size", target_size//2)
    condition_pad_to = config["train"]["dataset"]["condition_pad_to"]
    pos_offset_type = config["model"].get("pos_offset_type", "width")
    seed = config["model"].get("seed", seed)

    device = pipe._execution_device

    condition_imgs = test_sample['input_images']
    position_delta = test_sample['position_delta']
    prompt = test_sample['prompt']
    original_image = test_sample.get('original_image', None)
    condition_type = test_sample.get('condition_type', "subject")
    modulation_input = test_sample.get('modulation', None)

    delta_start_ends = None
    condition_latents = condition_ids = None
    text_cond_mask = None
    
    delta_embs = None
    delta_embs_pblock = None
    delta_embs_mask = None

    try:
        max_length = config["model"]["modulation"]["max_text_len"]
    except Exception as e:
        print(e)
        max_length = 512

    if modulation_input is None or len(modulation_input) == 0:
        delta_emb = delta_emb_pblock = delta_emb_mask = None
    else:
        dtype = torch.bfloat16
        batch_size = 1
        N = config["model"]["modulation"].get("per_block_adapter_single_blocks", 0) + 19
        guidance = torch.tensor([3.5]).to(device).expand(batch_size)
        out_dim = config["model"]["modulation"]["out_dim"]

        tar_text_inputs = tokenize_t5_prompt(pipe, prompt, max_length)
        tar_padding_mask = tar_text_inputs.attention_mask.to(device).bool()
        tar_tokens = tar_text_inputs.input_ids.to(device)
        if config["model"]["modulation"]["eos_exclude"]:
            tar_padding_mask[tar_tokens == 1] = False

        def get_start_end_by_pompt_matching(src_prompts, tar_prompts):
            text_cond_mask = torch.zeros(batch_size, max_length, device=device, dtype=torch.bool)
            tar_prompt_input_ids = tokenize_t5_prompt(pipe, tar_prompts, max_length).input_ids
            src_prompt_count = 1
            start_ends = []
            for i, (src_prompt, tar_prompt, tar_prompt_tokens) in enumerate(zip(src_prompts, tar_prompts, tar_prompt_input_ids)):
                try:
                    tar_start, tar_end = get_word_index(pipe, tar_prompt, tar_prompt_tokens, src_prompt, src_prompt_count, max_length, verbose=False)
                    start_ends.append([tar_start, tar_end])
                    text_cond_mask[i, tar_start:tar_end] = True
                except Exception as e:
                    print(e)
            return start_ends, text_cond_mask

        def encode_mod_image(pil_images):
            if config["model"]["modulation"]["use_dit"]:
                raise NotImplementedError()
            else:
                pil_images = [pad_to_square(img).resize((224, 224)) for img in pil_images]
                if config["model"]["modulation"]["use_vae"]:
                    raise NotImplementedError()
                else:
                    clip_pixel_values = pipe.clip_processor(
                        text=None, images=pil_images, do_resize=False, do_center_crop=False, return_tensors="pt",
                    ).pixel_values.to(dtype=dtype, device=device)
                    clip_outputs = pipe.clip_model(clip_pixel_values, output_hidden_states=True, interpolate_pos_encoding=True, return_dict=True)
                    return clip_outputs

        def rgba_to_white_background(input_path, background=(255,255,255)):
            with Image.open(input_path).convert("RGBA") as img:
                img_np = np.array(img)
                alpha = img_np[:, :, 3] / 255.0  # 归一化Alpha通道[3](@ref)
                rgb = img_np[:, :, :3].astype(float)  # 提取RGB通道
                
                background_np = np.full_like(rgb, background, dtype=float)  # 根据参数生成背景[7](@ref)
                
                # 混合计算:前景色*alpha + 背景色*(1-alpha)
                result_np = rgb * alpha[..., np.newaxis] + \
                            background_np * (1 - alpha[..., np.newaxis])
                
                result = Image.fromarray(result_np.astype(np.uint8), "RGB")
                return result
        def get_mod_emb(modulation_input, timestep):
            delta_emb = torch.zeros((batch_size, max_length, out_dim), dtype=dtype, device=device)
            delta_emb_pblock = torch.zeros((batch_size, max_length, N, out_dim), dtype=dtype, device=device)
            delta_emb_mask = torch.zeros((batch_size, max_length), dtype=torch.bool, device=device)
            delta_start_ends = None
            condition_latents = condition_ids = None
            text_cond_mask = None

            if modulation_input[0]["type"] == "adapter":
                num_inputs = len(modulation_input[0]["src_inputs"])
                src_prompts = [x["caption"] for x in modulation_input[0]["src_inputs"]]
                src_text_inputs = tokenize_t5_prompt(pipe, src_prompts, max_length)
                src_input_ids = unpad_input_ids(src_text_inputs.input_ids, src_text_inputs.attention_mask)
                tar_input_ids = unpad_input_ids(tar_text_inputs.input_ids, tar_text_inputs.attention_mask)
                src_prompt_embeds = pipe._get_t5_prompt_embeds(prompt=src_prompts, max_sequence_length=max_length, device=device) # (M, 512, 4096)
                
                pil_images = [rgba_to_white_background(x["image_path"]) for x in modulation_input[0]["src_inputs"]]

                src_ds_scales = [x.get("downsample_scale", 1.0) for x in modulation_input[0]["src_inputs"]]
                resized_pil_images = []
                for img, ds_scale in zip(pil_images, src_ds_scales):
                    img = pad_to_square(img)
                    if ds_scale < 1.0:
                        assert ds_scale > 0
                        img = img.resize((int(224 * ds_scale), int(224 * ds_scale))).resize((224, 224))
                    resized_pil_images.append(img)
                pil_images = resized_pil_images
                
                img_encoded = encode_mod_image(pil_images)
                delta_start_ends = []
                text_cond_mask = torch.zeros(num_inputs, max_length, device=device, dtype=torch.bool)
                if config["model"]["modulation"]["pass_vae"]:
                    pil_images = [pad_to_square(img).resize((condition_size, condition_size)) for img in pil_images]
                    with torch.no_grad():
                        batch_tensor = torch.stack([pil2tensor(x) for x in pil_images])
                        x_0, img_ids = encode_vae_images(pipe, batch_tensor) # (N, 256, 64)

                    condition_latents = x_0.clone().detach().reshape(1, -1, 64) # (1, N256, 64)
                    condition_ids = img_ids.clone().detach()
                    condition_ids = condition_ids.unsqueeze(0).repeat_interleave(num_inputs, dim=0) # (N, 256, 3)
                    for i in range(num_inputs):
                        condition_ids[i, :, 1] += 0 if pos_offset_type == "width" else -(batch_tensor.shape[-1]//16) * (i + 1)
                        condition_ids[i, :, 2] += -(batch_tensor.shape[-1]//16) * (i + 1)
                    condition_ids = condition_ids.reshape(-1, 3) # (N256, 3)

                if config["model"]["modulation"]["use_dit"]:
                    raise NotImplementedError()
                else:
                    src_delta_embs = [] # [(512, 3072)]
                    src_delta_emb_pblock = []
                    for i in range(num_inputs):
                        if isinstance(img_encoded, dict):
                            _src_clip_outputs = {}
                            for key in img_encoded:
                                if torch.is_tensor(img_encoded[key]):
                                    _src_clip_outputs[key] = img_encoded[key][i:i+1]
                                else:
                                    _src_clip_outputs[key] = [x[i:i+1] for x in img_encoded[key]]
                            _img_encoded = _src_clip_outputs
                        else:
                            _img_encoded = img_encoded[i:i+1]
                    
                        x1, x2 = pipe.modulation_adapters[0](timestep, src_prompt_embeds[i:i+1], _img_encoded)
                        src_delta_embs.append(x1[0]) # (512, 3072)
                        src_delta_emb_pblock.append(x2[0]) # (512, N, 3072)

                for input_args in modulation_input[0]["use_words"]:
                    src_word_count = 1
                    if len(input_args) == 3:
                        src_input_index, src_word, tar_word = input_args
                        tar_word_count = 1
                    else:
                        src_input_index, src_word, tar_word, tar_word_count = input_args[:4]
                    src_prompt = src_prompts[src_input_index]
                    tar_prompt = prompt

                    src_start, src_end = get_word_index(pipe, src_prompt, src_input_ids[src_input_index], src_word, src_word_count, max_length, verbose=False)
                    tar_start, tar_end = get_word_index(pipe, tar_prompt, tar_input_ids[0], tar_word, tar_word_count, max_length, verbose=False)
                    if delta_emb is not None:
                        delta_emb[:, tar_start:tar_end] = src_delta_embs[src_input_index][src_start:src_end] # (B, 512, 3072)
                    if delta_emb_pblock is not None:
                        delta_emb_pblock[:, tar_start:tar_end] = src_delta_emb_pblock[src_input_index][src_start:src_end] # (B, 512, N, 3072)
                    delta_emb_mask[:, tar_start:tar_end] = True
                    text_cond_mask[src_input_index, tar_start:tar_end] = True
                    delta_start_ends.append([0, src_input_index, src_start, src_end, tar_start, tar_end])
                text_cond_mask = text_cond_mask.transpose(0, 1).unsqueeze(0)

            else:
                raise NotImplementedError()
            return delta_emb, delta_emb_pblock, delta_emb_mask, \
                text_cond_mask, delta_start_ends, condition_latents, condition_ids
    
    num_channels_latents = pipe.transformer.config.in_channels // 4

    # set timesteps
    sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
    mu = calculate_shift(
        num_channels_latents,
        pipe.scheduler.config.base_image_seq_len,
        pipe.scheduler.config.max_image_seq_len,
        pipe.scheduler.config.base_shift,
        pipe.scheduler.config.max_shift,
    )
    timesteps, num_inference_steps = retrieve_timesteps(
        pipe.scheduler,
        num_inference_steps,
        device,
        None,
        sigmas,
        mu=mu,
    )

    if modulation_input is not None:
        delta_embs = []
        delta_embs_pblock = []
        delta_embs_mask = []
        for i, t in enumerate(timesteps):
            t = t.expand(1).to(torch.bfloat16) / 1000
            (
                delta_emb, delta_emb_pblock, delta_emb_mask, 
                text_cond_mask, delta_start_ends, 
                condition_latents, condition_ids
            ) = get_mod_emb(modulation_input, t)
            delta_embs.append(delta_emb)
            delta_embs_pblock.append(delta_emb_pblock)
            delta_embs_mask.append(delta_emb_mask)

    if original_image is not None:
        raise NotImplementedError()
        (target_height, target_width), closest_ratio = get_closest_ratio(original_image.height, original_image.width, train_aspect_ratios)
    elif modulation_input is None or len(modulation_input) == 0:
        delta_emb = delta_emb_pblock = delta_emb_mask = None
    else:
        for i, t in enumerate(timesteps):
            t = t.expand(1).to(torch.bfloat16) / 1000
            (
                delta_emb, delta_emb_pblock, delta_emb_mask, 
                text_cond_mask, delta_start_ends, 
                condition_latents, condition_ids
            ) = get_mod_emb(modulation_input, t)
            delta_embs.append(delta_emb)
            delta_embs_pblock.append(delta_emb_pblock)
            delta_embs_mask.append(delta_emb_mask)

    if target_height is None or target_width is None:
        target_height = target_width = target_size

    if condition_pad_to == "square":
        condition_imgs = [pad_to_square(x) for x in condition_imgs]
    elif condition_pad_to == "target":
        condition_imgs = [pad_to_target(x, (target_size, target_size)) for x in condition_imgs]
    condition_imgs = [x.resize((condition_size, condition_size)).convert("RGB") for x in condition_imgs]
    # TODO: fix position_delta
    conditions = [
        Condition(
            condition_type=condition_type,
            condition=x,
            position_delta=position_delta,
        ) for x in condition_imgs
    ]
    # vlm_images = condition_imgs if config["model"]["use_vlm"] else []

    use_perblock_adapter = False
    try:
        if config["model"]["modulation"]["use_perblock_adapter"]:
            use_perblock_adapter = True
    except Exception as e:
        pass

    results = []
    for i in range(num_images):
        clear_attn_maps(pipe.transformer)
        generator = torch.Generator(device=device)
        generator.manual_seed(seed + i)
        if modulation_input is None or len(modulation_input) == 0:
            idips = None
        else:
            idips = ["human" in p["image_path"] for p in modulation_input[0]["src_inputs"]]
            if len(modulation_input[0]["use_words"][0])==5:
                print("use idips in use_words")
                idips = [x[-1] for x in modulation_input[0]["use_words"]]
        result_img = generate(
            pipe,
            prompt=prompt,
            num_inference_steps=num_inference_steps,
            max_sequence_length=max_length,
            vae_conditions=conditions,
            generator=generator,
            model_config=config["model"],
            height=target_height,
            width=target_width,
            condition_pad_to=condition_pad_to,
            condition_size=condition_size,
            text_cond_mask=text_cond_mask,
            delta_emb=delta_embs,
            delta_emb_pblock=delta_embs_pblock if use_perblock_adapter else None,
            delta_emb_mask=delta_embs_mask,
            delta_start_ends=delta_start_ends,
            condition_latents=condition_latents,
            condition_ids=condition_ids,
            mod_adapter=pipe.modulation_adapters[0] if config["model"]["modulation"]["use_dit"] else None,
            vae_skip_iter=vae_skip_iter,
            control_weight_lambda=control_weight_lambda,
            double_attention=double_attention,
            single_attention=single_attention,
            ip_scale=ip_scale,
            use_latent_sblora_control=use_latent_sblora_control,
            latent_sblora_scale=latent_sblora_scale,
            use_condition_sblora_control=use_condition_sblora_control,
            condition_sblora_scale=condition_sblora_scale,
            idips=idips if use_idip else None,
            **kargs,
        ).images[0]

        final_image = result_img
        results.append(final_image)

    if num_images == 1:
        return results[0]
    return results