File size: 14,421 Bytes
f0dfe23 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 |
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import cv2
import json
import torch
import random
import base64
import numpy as np
from PIL import Image, ImageDraw
from glob import glob
from torchvision import transforms as T
import os
import gc
from webdataset.filters import default_collation_fn, pipelinefilter
import yaml
def get_rank_and_worldsize():
try:
local_rank = int(os.environ.get("LOCAL_RANK"))
global_rank = int(os.environ.get("RANK"))
world_size = int(os.getenv('WORLD_SIZE', 1))
except:
local_rank = 0
global_rank = 0
world_size = 1
return local_rank, global_rank, world_size
def get_train_config(config_path=None):
if config_path is None:
config_path = os.environ.get("XFL_CONFIG")
assert config_path is not None, "Please set the XFL_CONFIG environment variable"
with open(config_path, "r") as f:
config = yaml.safe_load(f)
return config
def calculate_aspect_ratios(resolution):
ASPECT_RATIO = {
'0.25': [128.0, 512.0], '0.26': [128.0, 496.0], '0.27': [128.0, 480.0], '0.28': [128.0, 464.0],
'0.32': [144.0, 448.0], '0.33': [144.0, 432.0], '0.35': [144.0, 416.0], '0.4': [160.0, 400.0],
'0.42': [160.0, 384.0], '0.48': [176.0, 368.0], '0.5': [176.0, 352.0], '0.52': [176.0, 336.0],
'0.57': [192.0, 336.0], '0.6': [192.0, 320.0], '0.68': [208.0, 304.0], '0.72': [208.0, 288.0],
'0.78': [224.0, 288.0], '0.82': [224.0, 272.0], '0.88': [240.0, 272.0], '0.94': [240.0, 256.0],
'1.0': [256.0, 256.0], '1.07': [256.0, 240.0], '1.13': [272.0, 240.0], '1.21': [272.0, 224.0],
'1.29': [288.0, 224.0], '1.38': [288.0, 208.0], '1.46': [304.0, 208.0], '1.67': [320.0, 192.0],
'1.75': [336.0, 192.0], '2.0': [352.0, 176.0], '2.09': [368.0, 176.0], '2.4': [384.0, 160.0],
'2.5': [400.0, 160.0], '2.89': [416.0, 144.0], '3.0': [432.0, 144.0], '3.11': [448.0, 144.0],
'3.62': [464.0, 128.0], '3.75': [480.0, 128.0], '3.88': [496.0, 128.0], '4.0': [512.0, 128.0]
}
NEW_ASPECT_RATIO = {}
for ratio in ASPECT_RATIO:
height, width = ASPECT_RATIO[ratio]
width = round(width / 256 * resolution)
height = round(height / 256 * resolution)
if width % 8 != 0:
print(f"skip train resolution {width}, {height}")
continue
if height % 8 != 0:
print(f"skip train resolution {width}, {height}")
continue
NEW_ASPECT_RATIO[ratio] = [height, width]
return NEW_ASPECT_RATIO
ASPECT_RATIO_256 = calculate_aspect_ratios(256)
ASPECT_RATIO_384 = calculate_aspect_ratios(384)
ASPECT_RATIO_512 = calculate_aspect_ratios(512)
ASPECT_RATIO_768 = calculate_aspect_ratios(768)
ASPECT_RATIO_1024 = calculate_aspect_ratios(1024)
def get_closest_ratio(height: float, width: float, ratios: dict):
aspect_ratio = height / width
closest_ratio = min(ratios.keys(), key=lambda ratio: abs(float(ratio) - aspect_ratio))
return ratios[closest_ratio], closest_ratio
def _aspect_ratio_batched(
data,
batchsize=20,
aspect_ratios=ASPECT_RATIO_512,
batch_cross=False,
collation_fn=default_collation_fn,
partial=True,
):
"""Create batches of the given size.
:param data: iterator
:param batchsize: target batch size
:param tensors: automatically batch lists of ndarrays into ndarrays
:param partial: return partial batches
:returns: iterator
"""
assert collation_fn is not None
buckets = {
ratio: {"cross": [], "no_cross": []} for ratio in aspect_ratios.keys()
}
def check(buckets):
for ratio in buckets:
for bucket_name in buckets[ratio]:
bucket = buckets[ratio][bucket_name]
assert len(bucket) < batchsize
for sample in data:
check(buckets)
height, width = sample['original_sizes']
(new_height, new_width), closest_ratio = get_closest_ratio(height, width, aspect_ratios)
bucket_name = "cross" if sample["has_cross"] and batch_cross else "no_cross"
bucket = buckets[closest_ratio][bucket_name]
bucket.append(sample)
if len(bucket) >= batchsize:
try:
batch = collation_fn(bucket)
yield batch
del batch
except Exception as e:
print(f"[aspect_ratio_batched] collation_fn batch failed due to error {e}")
for sample in bucket:
if "__key__" in sample:
print("error sample key in batch:", sample["__key__"])
if "__url__" in sample:
print("error sample url in batch:", sample["__url__"])
buckets[closest_ratio][bucket_name] = []
del bucket
gc.collect()
# yield the rest data and reset the buckets
for ratio in buckets.keys():
for bucket_name in ["cross", "no_cross"]:
bucket = buckets[ratio][bucket_name]
if len(bucket) > 0:
if len(bucket) == batchsize or partial:
batch = collation_fn(bucket)
yield batch
del batch
buckets[ratio][bucket_name] = []
del bucket
aspect_ratio_batched = pipelinefilter(_aspect_ratio_batched)
def apply_aspect_ratio_batched(dataset, batchsize, aspect_ratios, batch_cross, collation_fn, partial=True):
return dataset.compose(
aspect_ratio_batched(
batchsize,
aspect_ratios=aspect_ratios,
batch_cross=batch_cross,
collation_fn=collation_fn,
partial=partial
)
)
def get_aspect_ratios(enable_aspect_ratio, resolution):
if enable_aspect_ratio:
# print("[Dataset] Multi Aspect Ratio Training Enabled")
if resolution == 256:
aspect_ratios = ASPECT_RATIO_256
elif resolution == 384:
aspect_ratios = ASPECT_RATIO_384
elif resolution == 512:
aspect_ratios = ASPECT_RATIO_512
elif resolution == 768:
aspect_ratios = ASPECT_RATIO_768
elif resolution == 1024:
aspect_ratios = ASPECT_RATIO_1024
else:
aspect_ratios = calculate_aspect_ratios(resolution)
else:
# print("[Dataset] Multi Aspect Ratio Training Disabled")
aspect_ratios = {
'1.0': [resolution, resolution]
}
return aspect_ratios
def bbox_to_grid(bbox, image_size, output_size=(224, 224)):
"""
Convert bounding box to a grid of points.
Args:
bbox (list of float): [xmin, ymin, xmax, ymax]
output_size (tuple of int): (height, width) of the output grid
Returns:
torch.Tensor: Grid of points with shape (output_height, output_width, 2)
"""
xmin, ymin, xmax, ymax = bbox
# Create a meshgrid for the output grid
h, w = output_size
yy, xx = torch.meshgrid(
torch.linspace(ymin, ymax, h),
torch.linspace(xmin, xmax, w)
)
grid = torch.stack((xx, yy), -1)
# Normalize grid to range [-1, 1]
H, W = image_size
grid[..., 0] = grid[..., 0] / (W - 1) * 2 - 1 # Normalize x to [-1, 1]
grid[..., 1] = grid[..., 1] / (H - 1) * 2 - 1 # Normalize y to [-1, 1]
return grid
def random_crop_instance(instance, min_crop_ratio):
assert 0 < min_crop_ratio <= 1
crop_width_ratio = random.uniform(min_crop_ratio, 1)
crop_height_ratio = random.uniform(min_crop_ratio, 1)
orig_width, orig_height = instance.size
crop_width = int(orig_width * crop_width_ratio)
crop_height = int(orig_height * crop_height_ratio)
crop_left = random.randint(0, orig_width - crop_width)
crop_top = random.randint(0, orig_height - crop_height)
crop_box = (crop_left, crop_top, crop_left + crop_width, crop_top + crop_height) # (left, upper, right, lower)
return instance.crop(crop_box), crop_box
pil2tensor = T.ToTensor()
tensor2pil = T.ToPILImage()
cv2pil = lambda x: Image.fromarray(cv2.cvtColor(x, cv2.COLOR_BGR2RGB))
pil2cv2 = lambda x: cv2.cvtColor(np.array(x), cv2.COLOR_RGB2BGR)
def compute_psnr(x, y):
y = y.resize(x.size)
x = pil2tensor(x) * 255.
y = pil2tensor(y) * 255.
mse = torch.mean((x - y) ** 2)
return 20 * torch.log10(255.0 / torch.sqrt(mse)).item()
def replace_first_occurrence(sentence, word_or_phrase, replace_with):
# Escape special characters in word_or_phrase for exact matching
escaped_word_or_phrase = re.escape(word_or_phrase)
pattern = r'\b' + escaped_word_or_phrase + r'\b'
# Finding the first match
match = next(re.finditer(pattern, sentence), None)
if match:
# Perform replacement
result = re.sub(pattern, replace_with, sentence, count=1)
replaced = True
index = match.start()
else:
# No match found
result = sentence
replaced = False
index = -1
return result, replaced, index
def decode_base64_to_image(base64_str):
# Decode the base64 string to bytes
img_bytes = base64.b64decode(base64_str)
# Create a BytesIO buffer from the bytes
img_buffer = io.BytesIO(img_bytes)
# Open the image using Pillow
image = Image.open(img_buffer)
return image
def jpeg_compression(pil_image, quality):
buffer = io.BytesIO()
pil_image.save(buffer, format="JPEG", quality=quality)
return Image.open(io.BytesIO(buffer.getvalue()))
def pad_to_square(pil_image):
new_size = max(pil_image.width, pil_image.height)
square_image = Image.new("RGB", (new_size, new_size), "white")
left = (new_size - pil_image.width) // 2
top = (new_size - pil_image.height) // 2
square_image.paste(pil_image, (left, top))
return square_image
def pad_to_target(pil_image, target_size):
original_width, original_height = pil_image.size
target_width, target_height = target_size
original_aspect_ratio = original_width / original_height
target_aspect_ratio = target_width / target_height
# Pad the image to the target aspect ratio
if original_aspect_ratio > target_aspect_ratio:
new_width = original_width
new_height = int(new_width / target_aspect_ratio)
else:
new_height = original_height
new_width = int(new_height * target_aspect_ratio)
pad_image = Image.new("RGB", (new_width, new_height), "white")
left = (new_width - original_width) // 2
top = (new_height - original_height) // 2
pad_image.paste(pil_image, (left, top))
# Resize the image to the target size
resized_image = pad_image.resize(target_size)
return resized_image
def image_grid(imgs, rows, cols):
# assert len(imgs) == rows * cols
w, h = imgs[0].size
if imgs[0].mode == 'L':
grid = Image.new('L', size=(cols * w, rows * h))
else:
grid = Image.new('RGB', size=(cols * w, rows * h))
for i, img in enumerate(imgs):
grid.paste(img, box=(i % cols * w, i // cols * h))
return grid
def split_grid(image):
width = image.width // 2
height = image.height // 2
crop_tuples_list = [
(0, 0, width, height),
(width, 0, width*2, height),
(0, height, width, height*2),
(width, height, width*2, height*2),
]
def crop_image(input_image, crop_tuple=None):
if crop_tuple is None:
return input_image
return input_image.crop((crop_tuple[0], crop_tuple[1], crop_tuple[2], crop_tuple[3]))
return [crop_image(image, crop_tuple) for crop_tuple in crop_tuples_list]
def add_border(img, border_color, border_thickness):
"""
Add a colored border to an image without changing its size.
Parameters:
border_color (tuple): Border color in RGB (e.g., (255, 0, 0) for red).
border_thickness (int): Thickness of the border in pixels.
"""
width, height = img.size
img = img.copy()
draw = ImageDraw.Draw(img)
draw.rectangle((0, 0, width, border_thickness), fill=border_color)
draw.rectangle((0, height - border_thickness, width, height), fill=border_color)
draw.rectangle((0, 0, border_thickness, height), fill=border_color)
draw.rectangle((width - border_thickness, 0, width, height), fill=border_color)
return img
def merge_bboxes(bboxes):
if not bboxes:
return None # Handle empty input
# Extract all coordinates
x_mins = [b[0] for b in bboxes]
y_mins = [b[1] for b in bboxes]
x_maxs = [b[2] for b in bboxes]
y_maxs = [b[3] for b in bboxes]
# Compute the merged box
merged_box = (
min(x_mins), # x_min
min(y_mins), # y_min
max(x_maxs), # x_max
max(y_maxs) # y_max
)
return merged_box
def flip_bbox_left_right(bbox, image_width):
"""
Flips the bounding box horizontally on an image.
Parameters:
bbox (list of float): [x_min, y_min, x_max, y_max]
image_width (int): The width of the image
Returns:
list of float: New bounding box after horizontal flip [x_min', y_min', x_max', y_max']
"""
x_min, y_min, x_max, y_max = bbox
new_x_min = image_width - x_max
new_x_max = image_width - x_min
new_bbox = [new_x_min, y_min, new_x_max, y_max]
return new_bbox
def json_load(path, encoding='ascii'):
with open(path, 'r', encoding=encoding) as file:
return json.load(file)
def json_dump(obj, path, encoding='ascii', indent=4, create_dir=True, verbose=True, **kwargs):
if create_dir and os.path.dirname(path) != '':
os.makedirs(os.path.dirname(path), exist_ok=True)
with open(path, 'w', encoding=encoding) as file:
json.dump(obj, file, indent=4, ensure_ascii=False, **kwargs)
if verbose:
print(type(obj), 'saved to', path)
|