XVerse / eval /grounded_sam /grounded_sam2_florence2_autolabel_pipeline.py
alexnasa's picture
Update eval/grounded_sam/grounded_sam2_florence2_autolabel_pipeline.py
4e9741b verified
raw
history blame
14.6 kB
import os
import cv2
import torch
import argparse
import numpy as np
import supervision as sv
from PIL import Image
import gc
import sys
from eval.grounded_sam.florence2.modeling_florence2 import Florence2ForConditionalGeneration
from eval.grounded_sam.florence2.processing_florence2 import Florence2Processor
from eval.grounded_sam.sam2.build_sam import build_sam2
from eval.grounded_sam.sam2.sam2_image_predictor import SAM2ImagePredictor
class FlorenceSAM:
# official usage: https://huggingface.co/microsoft/Florence-2-large/blob/main/sample_inference.ipynb
TASK_PROMPT = {
"original": "<GIVEN>",
"caption": "<CAPTION>",
"detailed_caption": "<DETAILED_CAPTION>",
"more_detailed_caption": "<MORE_DETAILED_CAPTION>",
"object_detection": "<OD>",
"dense_region_caption": "<DENSE_REGION_CAPTION>",
"region_proposal": "<REGION_PROPOSAL>",
"phrase_grounding": "<CAPTION_TO_PHRASE_GROUNDING>",
"referring_expression_segmentation": "<REFERRING_EXPRESSION_SEGMENTATION>",
"region_to_segmentation": "<REGION_TO_SEGMENTATION>",
"open_vocabulary_detection": "<OPEN_VOCABULARY_DETECTION>",
"region_to_category": "<REGION_TO_CATEGORY>",
"region_to_description": "<REGION_TO_DESCRIPTION>",
"ocr": "<OCR>",
"ocr_with_region": "<OCR_WITH_REGION>",
}
def __init__(self, device):
"""
Init Florence-2 and SAM 2 Model
"""
print(f"[{self}] init on device {device}")
self.device = torch.device(device)
# with torch.autocast(device_type="cuda", dtype=torch.float32).__enter__()
# self.torch_dtype = torch.float32
# self.torch_dtype = torch.float16
self.torch_dtype = torch.bfloat16
try:
if torch.cuda.get_device_properties(0).major >= 8:
# turn on tfloat32 for Ampere GPUs (https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices)
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
# self.torch_dtype = torch.bfloat16
# else:
# self.torch_dtype = torch.float16
except:
self.torch_dtype = torch.bfloat16
FLORENCE2_MODEL_ID = os.getenv('FLORENCE2_MODEL_PATH')
print(f'FLORENCE2_MODEL_ID is {FLORENCE2_MODEL_ID}')
SAM2_CHECKPOINT = os.getenv('SAM2_MODEL_PATH')
SAM2_CONFIG = "configs/sam2.1/sam2.1_hiera_l.yaml"
self.florence2_model = Florence2ForConditionalGeneration.from_pretrained(
FLORENCE2_MODEL_ID,
trust_remote_code=True,
local_files_only=True,
torch_dtype=self.torch_dtype,
).eval().to(self.device)
self.florence2_processor = Florence2Processor.from_pretrained(
FLORENCE2_MODEL_ID,
trust_remote_code=True,
local_files_only=True,
)
sam2_model = build_sam2(SAM2_CONFIG, SAM2_CHECKPOINT, device=self.device)
self.sam2_predictor = SAM2ImagePredictor(sam2_model)
def __str__(self):
return "FlorenceSAM"
@torch.no_grad()
def run_florence2(self, task_prompt, text_input, image):
model = self.florence2_model
processor = self.florence2_processor
device = self.device
assert model is not None, "You should pass the init florence-2 model here"
assert processor is not None, "You should set florence-2 processor here"
with torch.autocast(device_type="cuda", dtype=torch.float32):
if text_input is None:
prompt = task_prompt
else:
prompt = task_prompt + text_input
inputs = processor(
text=prompt, images=image,
max_length=1024,
truncation=True,
return_tensors="pt",
).to(device, self.torch_dtype)
# inputs = processor(text=prompt, images=image, return_tensors="pt").to(device, self.torch_dtype)
generated_ids = model.generate(
input_ids=inputs["input_ids"].to(device),
pixel_values=inputs["pixel_values"].to(device),
# max_new_tokens=1024,
max_new_tokens=768,
early_stopping=False,
do_sample=False,
num_beams=3,
)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
parsed_answer = processor.post_process_generation(
generated_text,
task=task_prompt,
image_size=(image.width, image.height)
)
return parsed_answer
def caption(self, image, caption_task_prompt='<CAPTION>'):
assert caption_task_prompt in ["<CAPTION>", "<DETAILED_CAPTION>", "<MORE_DETAILED_CAPTION>"]
caption_results = self.run_florence2(caption_task_prompt, None, image)
text_input = caption_results[caption_task_prompt]
caption = text_input
return caption
def segmentation(self, image, input_boxes, seg_model="sam"):
if seg_model == "sam":
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.float32):
sam2_predictor = self.sam2_predictor
sam2_predictor.set_image(np.array(image))
masks, scores, logits = sam2_predictor.predict(
point_coords=None,
point_labels=None,
box=input_boxes,
multimask_output=False,
)
if masks.ndim == 4:
masks = masks.squeeze(1)
if scores.ndim == 2:
scores = scores.squeeze(1)
else:
raise NotImplementedError()
return masks, scores
def post_process_results(self, image, caption, labels, detections, output_dir=None):
result_dict = {
"caption": caption,
"instance_images": [],
"instance_labels": [],
"instance_bboxes": [],
"instance_mask_scores": [],
}
if detections is None:
return detections, result_dict
if output_dir is not None:
os.makedirs(output_dir, exist_ok=True)
cv_image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
box_annotator = sv.BoxAnnotator()
annotated_frame = box_annotator.annotate(scene=cv_image.copy(), detections=detections)
label_annotator = sv.LabelAnnotator(text_position=sv.Position.CENTER)
annotated_frame = label_annotator.annotate(scene=annotated_frame, detections=detections, labels=labels)
if output_dir is not None:
cv2.imwrite(os.path.join(output_dir, "detections.jpg"), annotated_frame)
mask_annotator = sv.MaskAnnotator()
annotated_frame = mask_annotator.annotate(scene=annotated_frame, detections=detections)
if output_dir is not None:
cv2.imwrite(os.path.join(output_dir, "masks.jpg"), annotated_frame)
for detection in detections:
xyxy, mask, confidence, class_id, tracker_id, data = detection
label = labels[class_id]
cropped_img = sv.crop_image(image=cv_image, xyxy=xyxy)
if output_dir is not None:
cv2.imwrite(os.path.join(output_dir, f"cropped_image_{label}.jpg"), cropped_img)
if mask is None:
result_dict["instance_mask_scores"].append(0)
result_dict["instance_images"].append(cropped_img)
else:
mask = np.repeat(mask[..., np.newaxis], 3, axis=-1)
masked_img = np.where(mask, cv_image, 255)
cropped_masked_img = sv.crop_image(image=masked_img, xyxy=xyxy)
result_dict["instance_mask_scores"].append(confidence.item())
result_dict["instance_images"].append(cropped_masked_img)
result_dict["instance_labels"].append(label)
result_dict["instance_bboxes"].append(xyxy)
if output_dir is not None:
cv2.imwrite(os.path.join(output_dir, f"masked_image_{label}.jpg"), cropped_masked_img)
torch.cuda.empty_cache()
gc.collect()
return detections, result_dict
def caption_phrase_grounding_and_segmentation(
self,
image,
seg_model="sam",
caption_task_prompt='<CAPTION>',
original_caption=None,
output_dir=None
):
assert caption_task_prompt in ["<CAPTION>", "<DETAILED_CAPTION>", "<MORE_DETAILED_CAPTION>", "<GIVEN>", "<OPEN_VOCABULARY_DETECTION>"]
assert seg_model in ["sam", "florence2"]
# image caption
if caption_task_prompt in ["<GIVEN>", "<OPEN_VOCABULARY_DETECTION>"]:
assert original_caption is not None
caption = original_caption
else:
caption_results = self.run_florence2(caption_task_prompt, None, image)
text_input = caption_results[caption_task_prompt]
caption = text_input
# phrase grounding
grounding_results = self.run_florence2('<CAPTION_TO_PHRASE_GROUNDING>', caption, image)['<CAPTION_TO_PHRASE_GROUNDING>']
input_boxes = np.array(grounding_results["bboxes"])
class_names = grounding_results["labels"]
class_ids = np.array(list(range(len(class_names))))
# segmentation
masks, scores = self.segmentation(image, input_boxes, seg_model)
labels = [f"{class_name}" for class_name in class_names]
detections = sv.Detections(
xyxy=input_boxes,
mask=masks.astype(bool),
class_id=class_ids,
confidence=scores,
)
return self.post_process_results(image, caption, labels, detections, output_dir)
def od_grounding_and_segmentation(
self,
image,
text_input,
seg_model="sam",
output_dir=None
):
assert seg_model in ["sam", "florence2"]
# od grounding
grounding_results = self.run_florence2('<OPEN_VOCABULARY_DETECTION>', text_input, image)['<OPEN_VOCABULARY_DETECTION>']
if len(grounding_results["bboxes"]) == 0:
detections = None
labels = []
else:
input_boxes = np.array(grounding_results["bboxes"])
class_names = grounding_results["bboxes_labels"]
class_ids = np.array(list(range(len(class_names))))
# segmentation
masks, scores = self.segmentation(image, input_boxes, seg_model)
labels = [f"{class_name}" for class_name in class_names]
detections = sv.Detections(
xyxy=input_boxes,
mask=masks.astype(bool),
class_id=class_ids,
confidence=scores,
)
return self.post_process_results(image, text_input, labels, detections, output_dir)
def od_grounding(
self,
image,
text_input,
output_dir=None
):
# od grounding
grounding_results = self.run_florence2('<OPEN_VOCABULARY_DETECTION>', text_input, image)['<OPEN_VOCABULARY_DETECTION>']
if len(grounding_results["bboxes"]) == 0:
detections = None
labels = []
else:
input_boxes = np.array(grounding_results["bboxes"])
class_names = grounding_results["bboxes_labels"]
class_ids = np.array(list(range(len(class_names))))
labels = [f"{class_name}" for class_name in class_names]
detections = sv.Detections(
xyxy=input_boxes,
class_id=class_ids,
)
return self.post_process_results(image, text_input, labels, detections, output_dir)
def phrase_grounding_and_segmentation(
self,
image,
text_input,
seg_model="sam",
output_dir=None
):
assert seg_model in ["sam", "florence2"]
# phrase grounding
grounding_results = self.run_florence2('<CAPTION_TO_PHRASE_GROUNDING>', text_input, image)['<CAPTION_TO_PHRASE_GROUNDING>']
input_boxes = np.array(grounding_results["bboxes"])
class_names = grounding_results["labels"]
# print(f"[phrase_grounding_and_segmentation] input_label={text_input}, output_label={class_names}")
class_ids = np.array(list(range(len(class_names))))
# segmentation
masks, scores = self.segmentation(image, input_boxes, seg_model)
labels = [f"{class_name}" for class_name in class_names]
detections = sv.Detections(
xyxy=input_boxes,
mask=masks.astype(bool),
class_id=class_ids,
confidence=scores,
)
return self.post_process_results(image, text_input, labels, detections, output_dir)
if __name__ == "__main__":
parser = argparse.ArgumentParser("Grounded SAM 2 Florence-2 Demos", add_help=True)
parser.add_argument("--image_path", type=str, default="./notebooks/images/cars.jpg", required=True, help="path to image file")
parser.add_argument("--caption_type", type=str, default="caption", required=False, help="granularity of caption")
args = parser.parse_args()
# IMAGE_PATH = args.image_path
PIPELINE = "caption_to_phrase_grounding"
CAPTION_TYPE = args.caption_type
assert CAPTION_TYPE in ["caption", "detailed_caption", "more_detailed_caption", "original"]
print(f"Running pipeline: {PIPELINE} now.")
pipeline = FlorenceSAM("cuda:0")
from glob import glob
from tqdm import tqdm
for image_path in tqdm(glob("/mnt/bn/lq-prompt-alignment/personal/chenbowen/code/IPVerse/prompt_alignment/Grounded-SAM-2/notebooks/images/*") * 3):
# for image_path in tqdm(glob("/mnt/bn/lq-prompt-alignment/personal/chenbowen/code/IPVerse/prompt_alignment/Grounded-SAM-2/outputs/gcg_pipeline/00001.tar_debug/*.png")):
print(pipeline.TASK_PROMPT, CAPTION_TYPE)
image = Image.open(image_path).convert("RGB")
pipeline.caption_phrase_grounding_and_segmentation(
image=image,
seg_model="sam",
caption_task_prompt=pipeline.TASK_PROMPT[CAPTION_TYPE],
output_dir=f"./outputs/{os.path.basename(image_path)}"
)