XVerse / src /flux /transformer.py
alexnasa's picture
Update src/flux/transformer.py
e7ad2ae verified
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
# Copyright 2024 Black Forest Labs and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from diffusers.pipelines import FluxPipeline
from typing import List, Union, Optional, Dict, Any, Callable
from .block import block_forward, single_block_forward
from .lora_controller import enable_lora
from diffusers.models.transformers.transformer_flux import (
FluxTransformer2DModel,
Transformer2DModelOutput,
USE_PEFT_BACKEND,
scale_lora_layers,
unscale_lora_layers,
logger,
)
import numpy as np
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
def is_torch_version(spec: str) -> bool:
# e.g. spec = ">=1.12.0"
return version.parse(torch.__version__) in version.SpecifierSet(spec)
def prepare_params(
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor = None,
pooled_projections: torch.Tensor = None,
timestep: torch.LongTensor = None,
img_ids: torch.Tensor = None,
txt_ids: torch.Tensor = None,
guidance: torch.Tensor = None,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
controlnet_block_samples=None,
controlnet_single_block_samples=None,
return_dict: bool = True,
**kwargs: dict,
):
return (
hidden_states,
encoder_hidden_states,
pooled_projections,
timestep,
img_ids,
txt_ids,
guidance,
joint_attention_kwargs,
controlnet_block_samples,
controlnet_single_block_samples,
return_dict,
)
def tranformer_forward(
transformer: FluxTransformer2DModel,
condition_latents: torch.Tensor,
condition_ids: torch.Tensor,
condition_type_ids: torch.Tensor,
model_config: Optional[Dict[str, Any]] = {},
c_t=0,
text_cond_mask: Optional[torch.FloatTensor] = None,
delta_emb: Optional[torch.FloatTensor] = None,
delta_emb_pblock: Optional[torch.FloatTensor] = None,
delta_emb_mask: Optional[torch.FloatTensor] = None,
delta_start_ends = None,
store_attn_map: bool = False,
use_text_mod: bool = True,
use_img_mod: bool = False,
mod_adapter = None,
latent_height: Optional[int] = None,
last_attn_map = None,
**params: dict,
):
self = transformer
use_condition = condition_latents is not None
(
hidden_states,
encoder_hidden_states,
pooled_projections,
timestep,
img_ids,
txt_ids,
guidance,
joint_attention_kwargs,
controlnet_block_samples,
controlnet_single_block_samples,
return_dict,
) = prepare_params(**params)
if joint_attention_kwargs is not None:
joint_attention_kwargs = joint_attention_kwargs.copy()
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
latent_sblora_weight = joint_attention_kwargs.pop("latent_sblora_weight", None)
condition_sblora_weight = joint_attention_kwargs.pop("condition_sblora_weight", None)
else:
lora_scale = 1.0
latent_sblora_weight = None
condition_sblora_weight = None
if USE_PEFT_BACKEND:
# weight the lora layers by setting `lora_scale` for each PEFT layer
scale_lora_layers(self, lora_scale)
else:
if (
joint_attention_kwargs is not None
and joint_attention_kwargs.get("scale", None) is not None
):
logger.warning(
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
)
train_partial_text_lora = model_config.get("train_partial_text_lora", False)
train_partial_latent_lora = model_config.get("train_partial_latent_lora", False)
if train_partial_text_lora or train_partial_latent_lora:
train_partial_text_lora_layers = model_config.get("train_partial_text_lora_layers", "")
train_partial_latent_lora_layers = model_config.get("train_partial_latent_lora_layers", "")
activate_x_embedder = True
if "x_embedder" not in train_partial_text_lora_layers or "x_embedder" not in train_partial_latent_lora_layers:
activate_x_embedder = False
if train_partial_text_lora or train_partial_latent_lora:
activate_x_embedder_ = activate_x_embedder
else:
activate_x_embedder_ = model_config["latent_lora"] or model_config["text_lora"]
with enable_lora((self.x_embedder,), activate_x_embedder_):
hidden_states = self.x_embedder(hidden_states)
cond_lora_activate = model_config["use_condition_dblock_lora"] or model_config["use_condition_sblock_lora"]
with enable_lora(
(self.x_embedder,),
dit_activated=activate_x_embedder if train_partial_text_lora or train_partial_latent_lora else not cond_lora_activate, cond_activated=cond_lora_activate,
):
condition_latents = self.x_embedder(condition_latents) if use_condition else None
timestep = timestep.to(hidden_states.dtype) * 1000
if guidance is not None:
guidance = guidance.to(hidden_states.dtype) * 1000
else:
guidance = None
temb = (
self.time_text_embed(timestep, pooled_projections)
if guidance is None
else self.time_text_embed(timestep, guidance, pooled_projections)
) # (B, 3072)
cond_temb = (
self.time_text_embed(torch.ones_like(timestep) * c_t * 1000, pooled_projections)
if guidance is None
else self.time_text_embed(
torch.ones_like(timestep) * c_t * 1000, guidance, pooled_projections
)
)
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
if txt_ids.ndim == 3:
logger.warning(
"Passing `txt_ids` 3d torch.Tensor is deprecated."
"Please remove the batch dimension and pass it as a 2d torch Tensor"
)
txt_ids = txt_ids[0]
if img_ids.ndim == 3:
logger.warning(
"Passing `img_ids` 3d torch.Tensor is deprecated."
"Please remove the batch dimension and pass it as a 2d torch Tensor"
)
img_ids = img_ids[0]
ids = torch.cat((txt_ids, img_ids), dim=0)
image_rotary_emb = self.pos_embed(ids)
if use_condition:
cond_rotary_emb = self.pos_embed(condition_ids)
for index_block, block in enumerate(self.transformer_blocks):
if delta_emb_pblock is None:
delta_emb_cblock = None
else:
delta_emb_cblock = delta_emb_pblock[:, :, index_block]
condition_pass_to_double = use_condition and (model_config["double_use_condition"] or model_config["single_use_condition"])
if self.training and self.gradient_checkpointing:
ckpt_kwargs: Dict[str, Any] = (
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
)
encoder_hidden_states, hidden_states, condition_latents = (
torch.utils.checkpoint.checkpoint(
block_forward,
self=block,
model_config=model_config,
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
condition_latents=condition_latents if condition_pass_to_double else None,
cond_temb=cond_temb if condition_pass_to_double else None,
cond_rotary_emb=cond_rotary_emb if condition_pass_to_double else None,
temb=temb,
text_cond_mask=text_cond_mask,
delta_emb=delta_emb,
delta_emb_cblock=delta_emb_cblock,
delta_emb_mask=delta_emb_mask,
delta_start_ends=delta_start_ends,
image_rotary_emb=image_rotary_emb,
store_attn_map=store_attn_map,
use_text_mod=use_text_mod,
use_img_mod=use_img_mod,
mod_adapter=mod_adapter,
latent_height=latent_height,
timestep=timestep,
last_attn_map=last_attn_map,
**ckpt_kwargs,
)
)
else:
encoder_hidden_states, hidden_states, condition_latents = block_forward(
block,
model_config=model_config,
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
condition_latents=condition_latents if condition_pass_to_double else None,
cond_temb=cond_temb if condition_pass_to_double else None,
cond_rotary_emb=cond_rotary_emb if condition_pass_to_double else None,
temb=temb,
text_cond_mask=text_cond_mask,
delta_emb=delta_emb,
delta_emb_cblock=delta_emb_cblock,
delta_emb_mask=delta_emb_mask,
delta_start_ends=delta_start_ends,
image_rotary_emb=image_rotary_emb,
store_attn_map=store_attn_map,
use_text_mod=use_text_mod,
use_img_mod=use_img_mod,
mod_adapter=mod_adapter,
latent_height=latent_height,
timestep=timestep,
last_attn_map=last_attn_map,
)
# controlnet residual
if controlnet_block_samples is not None:
interval_control = len(self.transformer_blocks) / len(
controlnet_block_samples
)
interval_control = int(np.ceil(interval_control))
hidden_states = (
hidden_states
+ controlnet_block_samples[index_block // interval_control]
)
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
for index_block, block in enumerate(self.single_transformer_blocks):
if delta_emb_pblock is not None and delta_emb_pblock.shape[2] > 19+index_block:
delta_emb_single = delta_emb
delta_emb_cblock = delta_emb_pblock[:, :, index_block+19]
else:
delta_emb_single = None
delta_emb_cblock = None
if self.training and self.gradient_checkpointing:
ckpt_kwargs: Dict[str, Any] = (
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
)
result = torch.utils.checkpoint.checkpoint(
single_block_forward,
self=block,
model_config=model_config,
hidden_states=hidden_states,
temb=temb,
delta_emb=delta_emb_single,
delta_emb_cblock=delta_emb_cblock,
delta_emb_mask=delta_emb_mask,
use_text_mod=use_text_mod,
use_img_mod=use_img_mod,
image_rotary_emb=image_rotary_emb,
last_attn_map=last_attn_map,
latent_height=latent_height,
timestep=timestep,
store_attn_map=store_attn_map,
**(
{
"condition_latents": condition_latents,
"cond_temb": cond_temb,
"cond_rotary_emb": cond_rotary_emb,
"text_cond_mask": text_cond_mask,
}
if use_condition and model_config["single_use_condition"]
else {}
),
**ckpt_kwargs,
)
else:
result = single_block_forward(
block,
model_config=model_config,
hidden_states=hidden_states,
temb=temb,
delta_emb=delta_emb_single,
delta_emb_cblock=delta_emb_cblock,
delta_emb_mask=delta_emb_mask,
use_text_mod=use_text_mod,
use_img_mod=use_img_mod,
image_rotary_emb=image_rotary_emb,
last_attn_map=last_attn_map,
latent_height=latent_height,
timestep=timestep,
store_attn_map=store_attn_map,
latent_sblora_weight=latent_sblora_weight,
condition_sblora_weight=condition_sblora_weight,
**(
{
"condition_latents": condition_latents,
"cond_temb": cond_temb,
"cond_rotary_emb": cond_rotary_emb,
"text_cond_mask": text_cond_mask,
}
if use_condition and model_config["single_use_condition"]
else {}
),
)
if use_condition and model_config["single_use_condition"]:
hidden_states, condition_latents = result
else:
hidden_states = result
# controlnet residual
if controlnet_single_block_samples is not None:
interval_control = len(self.single_transformer_blocks) / len(
controlnet_single_block_samples
)
interval_control = int(np.ceil(interval_control))
hidden_states[:, encoder_hidden_states.shape[1] :, ...] = (
hidden_states[:, encoder_hidden_states.shape[1] :, ...]
+ controlnet_single_block_samples[index_block // interval_control]
)
hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...]
hidden_states = self.norm_out(hidden_states, temb)
output = self.proj_out(hidden_states)
if USE_PEFT_BACKEND:
# remove `lora_scale` from each PEFT layer
unscale_lora_layers(self, lora_scale)
if not return_dict:
return (output,)
return Transformer2DModelOutput(sample=output)