|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
from diffusers.pipelines import FluxPipeline |
|
from typing import List, Union, Optional, Dict, Any, Callable |
|
from .block import block_forward, single_block_forward |
|
from .lora_controller import enable_lora |
|
from diffusers.models.transformers.transformer_flux import ( |
|
FluxTransformer2DModel, |
|
Transformer2DModelOutput, |
|
USE_PEFT_BACKEND, |
|
scale_lora_layers, |
|
unscale_lora_layers, |
|
logger, |
|
) |
|
import numpy as np |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
def is_torch_version(spec: str) -> bool: |
|
|
|
return version.parse(torch.__version__) in version.SpecifierSet(spec) |
|
|
|
def prepare_params( |
|
hidden_states: torch.Tensor, |
|
encoder_hidden_states: torch.Tensor = None, |
|
pooled_projections: torch.Tensor = None, |
|
timestep: torch.LongTensor = None, |
|
img_ids: torch.Tensor = None, |
|
txt_ids: torch.Tensor = None, |
|
guidance: torch.Tensor = None, |
|
joint_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
controlnet_block_samples=None, |
|
controlnet_single_block_samples=None, |
|
return_dict: bool = True, |
|
**kwargs: dict, |
|
): |
|
return ( |
|
hidden_states, |
|
encoder_hidden_states, |
|
pooled_projections, |
|
timestep, |
|
img_ids, |
|
txt_ids, |
|
guidance, |
|
joint_attention_kwargs, |
|
controlnet_block_samples, |
|
controlnet_single_block_samples, |
|
return_dict, |
|
) |
|
|
|
|
|
def tranformer_forward( |
|
transformer: FluxTransformer2DModel, |
|
condition_latents: torch.Tensor, |
|
condition_ids: torch.Tensor, |
|
condition_type_ids: torch.Tensor, |
|
model_config: Optional[Dict[str, Any]] = {}, |
|
c_t=0, |
|
text_cond_mask: Optional[torch.FloatTensor] = None, |
|
delta_emb: Optional[torch.FloatTensor] = None, |
|
delta_emb_pblock: Optional[torch.FloatTensor] = None, |
|
delta_emb_mask: Optional[torch.FloatTensor] = None, |
|
delta_start_ends = None, |
|
store_attn_map: bool = False, |
|
use_text_mod: bool = True, |
|
use_img_mod: bool = False, |
|
mod_adapter = None, |
|
latent_height: Optional[int] = None, |
|
last_attn_map = None, |
|
**params: dict, |
|
): |
|
self = transformer |
|
use_condition = condition_latents is not None |
|
|
|
( |
|
hidden_states, |
|
encoder_hidden_states, |
|
pooled_projections, |
|
timestep, |
|
img_ids, |
|
txt_ids, |
|
guidance, |
|
joint_attention_kwargs, |
|
controlnet_block_samples, |
|
controlnet_single_block_samples, |
|
return_dict, |
|
) = prepare_params(**params) |
|
|
|
if joint_attention_kwargs is not None: |
|
joint_attention_kwargs = joint_attention_kwargs.copy() |
|
lora_scale = joint_attention_kwargs.pop("scale", 1.0) |
|
latent_sblora_weight = joint_attention_kwargs.pop("latent_sblora_weight", None) |
|
condition_sblora_weight = joint_attention_kwargs.pop("condition_sblora_weight", None) |
|
else: |
|
lora_scale = 1.0 |
|
latent_sblora_weight = None |
|
condition_sblora_weight = None |
|
if USE_PEFT_BACKEND: |
|
|
|
scale_lora_layers(self, lora_scale) |
|
else: |
|
if ( |
|
joint_attention_kwargs is not None |
|
and joint_attention_kwargs.get("scale", None) is not None |
|
): |
|
logger.warning( |
|
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective." |
|
) |
|
|
|
train_partial_text_lora = model_config.get("train_partial_text_lora", False) |
|
train_partial_latent_lora = model_config.get("train_partial_latent_lora", False) |
|
|
|
if train_partial_text_lora or train_partial_latent_lora: |
|
train_partial_text_lora_layers = model_config.get("train_partial_text_lora_layers", "") |
|
train_partial_latent_lora_layers = model_config.get("train_partial_latent_lora_layers", "") |
|
activate_x_embedder = True |
|
if "x_embedder" not in train_partial_text_lora_layers or "x_embedder" not in train_partial_latent_lora_layers: |
|
activate_x_embedder = False |
|
if train_partial_text_lora or train_partial_latent_lora: |
|
activate_x_embedder_ = activate_x_embedder |
|
else: |
|
activate_x_embedder_ = model_config["latent_lora"] or model_config["text_lora"] |
|
|
|
with enable_lora((self.x_embedder,), activate_x_embedder_): |
|
hidden_states = self.x_embedder(hidden_states) |
|
cond_lora_activate = model_config["use_condition_dblock_lora"] or model_config["use_condition_sblock_lora"] |
|
with enable_lora( |
|
(self.x_embedder,), |
|
dit_activated=activate_x_embedder if train_partial_text_lora or train_partial_latent_lora else not cond_lora_activate, cond_activated=cond_lora_activate, |
|
): |
|
condition_latents = self.x_embedder(condition_latents) if use_condition else None |
|
|
|
timestep = timestep.to(hidden_states.dtype) * 1000 |
|
|
|
if guidance is not None: |
|
guidance = guidance.to(hidden_states.dtype) * 1000 |
|
else: |
|
guidance = None |
|
|
|
temb = ( |
|
self.time_text_embed(timestep, pooled_projections) |
|
if guidance is None |
|
else self.time_text_embed(timestep, guidance, pooled_projections) |
|
) |
|
|
|
cond_temb = ( |
|
self.time_text_embed(torch.ones_like(timestep) * c_t * 1000, pooled_projections) |
|
if guidance is None |
|
else self.time_text_embed( |
|
torch.ones_like(timestep) * c_t * 1000, guidance, pooled_projections |
|
) |
|
) |
|
encoder_hidden_states = self.context_embedder(encoder_hidden_states) |
|
|
|
if txt_ids.ndim == 3: |
|
logger.warning( |
|
"Passing `txt_ids` 3d torch.Tensor is deprecated." |
|
"Please remove the batch dimension and pass it as a 2d torch Tensor" |
|
) |
|
txt_ids = txt_ids[0] |
|
if img_ids.ndim == 3: |
|
logger.warning( |
|
"Passing `img_ids` 3d torch.Tensor is deprecated." |
|
"Please remove the batch dimension and pass it as a 2d torch Tensor" |
|
) |
|
img_ids = img_ids[0] |
|
|
|
ids = torch.cat((txt_ids, img_ids), dim=0) |
|
image_rotary_emb = self.pos_embed(ids) |
|
if use_condition: |
|
cond_rotary_emb = self.pos_embed(condition_ids) |
|
|
|
for index_block, block in enumerate(self.transformer_blocks): |
|
if delta_emb_pblock is None: |
|
delta_emb_cblock = None |
|
else: |
|
delta_emb_cblock = delta_emb_pblock[:, :, index_block] |
|
condition_pass_to_double = use_condition and (model_config["double_use_condition"] or model_config["single_use_condition"]) |
|
if self.training and self.gradient_checkpointing: |
|
ckpt_kwargs: Dict[str, Any] = ( |
|
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} |
|
) |
|
|
|
encoder_hidden_states, hidden_states, condition_latents = ( |
|
torch.utils.checkpoint.checkpoint( |
|
block_forward, |
|
self=block, |
|
model_config=model_config, |
|
hidden_states=hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
condition_latents=condition_latents if condition_pass_to_double else None, |
|
cond_temb=cond_temb if condition_pass_to_double else None, |
|
cond_rotary_emb=cond_rotary_emb if condition_pass_to_double else None, |
|
temb=temb, |
|
text_cond_mask=text_cond_mask, |
|
delta_emb=delta_emb, |
|
delta_emb_cblock=delta_emb_cblock, |
|
delta_emb_mask=delta_emb_mask, |
|
delta_start_ends=delta_start_ends, |
|
image_rotary_emb=image_rotary_emb, |
|
store_attn_map=store_attn_map, |
|
use_text_mod=use_text_mod, |
|
use_img_mod=use_img_mod, |
|
mod_adapter=mod_adapter, |
|
latent_height=latent_height, |
|
timestep=timestep, |
|
last_attn_map=last_attn_map, |
|
**ckpt_kwargs, |
|
) |
|
) |
|
|
|
else: |
|
encoder_hidden_states, hidden_states, condition_latents = block_forward( |
|
block, |
|
model_config=model_config, |
|
hidden_states=hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
condition_latents=condition_latents if condition_pass_to_double else None, |
|
cond_temb=cond_temb if condition_pass_to_double else None, |
|
cond_rotary_emb=cond_rotary_emb if condition_pass_to_double else None, |
|
temb=temb, |
|
text_cond_mask=text_cond_mask, |
|
delta_emb=delta_emb, |
|
delta_emb_cblock=delta_emb_cblock, |
|
delta_emb_mask=delta_emb_mask, |
|
delta_start_ends=delta_start_ends, |
|
image_rotary_emb=image_rotary_emb, |
|
store_attn_map=store_attn_map, |
|
use_text_mod=use_text_mod, |
|
use_img_mod=use_img_mod, |
|
mod_adapter=mod_adapter, |
|
latent_height=latent_height, |
|
timestep=timestep, |
|
last_attn_map=last_attn_map, |
|
) |
|
|
|
|
|
if controlnet_block_samples is not None: |
|
interval_control = len(self.transformer_blocks) / len( |
|
controlnet_block_samples |
|
) |
|
interval_control = int(np.ceil(interval_control)) |
|
hidden_states = ( |
|
hidden_states |
|
+ controlnet_block_samples[index_block // interval_control] |
|
) |
|
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1) |
|
|
|
for index_block, block in enumerate(self.single_transformer_blocks): |
|
if delta_emb_pblock is not None and delta_emb_pblock.shape[2] > 19+index_block: |
|
delta_emb_single = delta_emb |
|
delta_emb_cblock = delta_emb_pblock[:, :, index_block+19] |
|
else: |
|
delta_emb_single = None |
|
delta_emb_cblock = None |
|
if self.training and self.gradient_checkpointing: |
|
ckpt_kwargs: Dict[str, Any] = ( |
|
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} |
|
) |
|
result = torch.utils.checkpoint.checkpoint( |
|
single_block_forward, |
|
self=block, |
|
model_config=model_config, |
|
hidden_states=hidden_states, |
|
temb=temb, |
|
delta_emb=delta_emb_single, |
|
delta_emb_cblock=delta_emb_cblock, |
|
delta_emb_mask=delta_emb_mask, |
|
use_text_mod=use_text_mod, |
|
use_img_mod=use_img_mod, |
|
image_rotary_emb=image_rotary_emb, |
|
last_attn_map=last_attn_map, |
|
latent_height=latent_height, |
|
timestep=timestep, |
|
store_attn_map=store_attn_map, |
|
**( |
|
{ |
|
"condition_latents": condition_latents, |
|
"cond_temb": cond_temb, |
|
"cond_rotary_emb": cond_rotary_emb, |
|
"text_cond_mask": text_cond_mask, |
|
} |
|
if use_condition and model_config["single_use_condition"] |
|
else {} |
|
), |
|
**ckpt_kwargs, |
|
) |
|
|
|
else: |
|
result = single_block_forward( |
|
block, |
|
model_config=model_config, |
|
hidden_states=hidden_states, |
|
temb=temb, |
|
delta_emb=delta_emb_single, |
|
delta_emb_cblock=delta_emb_cblock, |
|
delta_emb_mask=delta_emb_mask, |
|
use_text_mod=use_text_mod, |
|
use_img_mod=use_img_mod, |
|
image_rotary_emb=image_rotary_emb, |
|
last_attn_map=last_attn_map, |
|
latent_height=latent_height, |
|
timestep=timestep, |
|
store_attn_map=store_attn_map, |
|
latent_sblora_weight=latent_sblora_weight, |
|
condition_sblora_weight=condition_sblora_weight, |
|
**( |
|
{ |
|
"condition_latents": condition_latents, |
|
"cond_temb": cond_temb, |
|
"cond_rotary_emb": cond_rotary_emb, |
|
"text_cond_mask": text_cond_mask, |
|
} |
|
if use_condition and model_config["single_use_condition"] |
|
else {} |
|
), |
|
) |
|
if use_condition and model_config["single_use_condition"]: |
|
hidden_states, condition_latents = result |
|
else: |
|
hidden_states = result |
|
|
|
|
|
if controlnet_single_block_samples is not None: |
|
interval_control = len(self.single_transformer_blocks) / len( |
|
controlnet_single_block_samples |
|
) |
|
interval_control = int(np.ceil(interval_control)) |
|
hidden_states[:, encoder_hidden_states.shape[1] :, ...] = ( |
|
hidden_states[:, encoder_hidden_states.shape[1] :, ...] |
|
+ controlnet_single_block_samples[index_block // interval_control] |
|
) |
|
|
|
hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...] |
|
|
|
hidden_states = self.norm_out(hidden_states, temb) |
|
output = self.proj_out(hidden_states) |
|
|
|
if USE_PEFT_BACKEND: |
|
|
|
unscale_lora_layers(self, lora_scale) |
|
|
|
if not return_dict: |
|
return (output,) |
|
return Transformer2DModelOutput(sample=output) |
|
|
|
|