alexnasa commited on
Commit
a769027
·
verified ·
1 Parent(s): d5ee134

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +80 -76
app.py CHANGED
@@ -18,6 +18,8 @@ from PIL import Image
18
  import subprocess
19
 
20
  import torch
 
 
21
  import gradio as gr
22
  import string
23
  import random, time, math
@@ -441,86 +443,88 @@ with gr.Blocks() as demo:
441
  with gr.Row():
442
  with gr.Column():
443
  prompt = gr.Textbox(label="Prompt", value="")
444
- with gr.Row():
445
- target_height = gr.Slider(512, 1024, step=128, value=768, label="Generated Height", info="")
446
- target_width = gr.Slider(512, 1024, step=128, value=768, label="Generated Width", info="")
447
- cond_size = gr.Slider(256, 384, step=128, value=256, label="Condition Size", info="")
448
- with gr.Row():
449
- weight_id = gr.Slider(0.1, 5, step=0.1, value=3, label="weight_id")
450
- weight_ip = gr.Slider(0.1, 5, step=0.1, value=5, label="weight_ip")
451
- with gr.Row():
452
- ip_scale_str = gr.Slider(0.5, 1.5, step=0.01, value=0.85, label="latent_lora_scale")
453
- vae_lora_scale = gr.Slider(0.5, 1.5, step=0.01, value=1.3, label="vae_lora_scale")
454
- with gr.Row():
455
- vae_skip_iter_s1 = gr.Slider(0, 1, step=0.01, value=0.05, label="vae_skip_iter_before")
456
- vae_skip_iter_s2 = gr.Slider(0, 1, step=0.01, value=0.8, label="vae_skip_iter_after")
457
-
458
-
459
- with gr.Row():
460
- weight_id_ip_str = gr.Textbox(
461
- value="0-1:1/3/5",
462
- label="weight_id_ip_str",
463
- interactive=False, visible=False
464
- )
465
- weight_id.change(
466
- lambda s1, s2: f"0-1:1/{s1}/{s2}",
467
- inputs=[weight_id, weight_ip],
468
- outputs=weight_id_ip_str
469
- )
470
- weight_ip.change(
471
- lambda s1, s2: f"0-1:1/{s1}/{s2}",
472
- inputs=[weight_id, weight_ip],
473
- outputs=weight_id_ip_str
474
- )
475
- vae_skip_iter = gr.Textbox(
476
- value="0-0.05:1,0.8-1:1",
477
- label="vae_skip_iter",
478
- interactive=False, visible=False
479
- )
480
- vae_skip_iter_s1.change(
481
- lambda s1, s2: f"0-{s1}:1,{s2}-1:1",
482
- inputs=[vae_skip_iter_s1, vae_skip_iter_s2],
483
- outputs=vae_skip_iter
484
- )
485
- vae_skip_iter_s2.change(
486
- lambda s1, s2: f"0-{s1}:1,{s2}-1:1",
487
- inputs=[vae_skip_iter_s1, vae_skip_iter_s2],
488
- outputs=vae_skip_iter
489
- )
490
 
491
-
492
- with gr.Row():
493
- db_latent_lora_scale_str = gr.Textbox(
494
- value="0-1:0.85",
495
- label="db_latent_lora_scale_str",
496
- interactive=False, visible=False
497
- )
498
- sb_latent_lora_scale_str = gr.Textbox(
499
- value="0-1:0.85",
500
- label="sb_latent_lora_scale_str",
501
- interactive=False, visible=False
502
- )
503
- vae_lora_scale_str = gr.Textbox(
504
- value="0-1:1.3",
505
- label="vae_lora_scale_str",
506
- interactive=False, visible=False
507
- )
508
- vae_lora_scale.change(
509
- lambda s: f"0-1:{s}",
510
- inputs=vae_lora_scale,
511
- outputs=vae_lora_scale_str
512
  )
513
- ip_scale_str.change(
514
- lambda s: [f"0-1:{s}", f"0-1:{s}"],
515
- inputs=ip_scale_str,
516
- outputs=[db_latent_lora_scale_str, sb_latent_lora_scale_str]
517
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
518
 
519
- with gr.Row():
520
- double_attention = gr.Checkbox(value=False, label="Double Attention", visible=False)
521
- single_attention = gr.Checkbox(value=True, label="Single Attention", visible=False)
522
-
523
- clear_btn = gr.Button("清空输入图像")
524
  with gr.Row():
525
  for i in range(num_inputs):
526
  image, caption, face_btn, det_btn, vlm_btn, accordion_state, accordion, id_ip_checkbox = create_image_input(i, open=i<2, indexs_state=indexs_state)
 
18
  import subprocess
19
 
20
  import torch
21
+ import torch.multiprocessing as mp
22
+ mp.set_start_method('spawn', force=True)
23
  import gradio as gr
24
  import string
25
  import random, time, math
 
443
  with gr.Row():
444
  with gr.Column():
445
  prompt = gr.Textbox(label="Prompt", value="")
446
+ with gr.Tab("Tiger"):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
447
 
448
+ with gr.Row():
449
+ target_height = gr.Slider(512, 1024, step=128, value=768, label="Generated Height", info="")
450
+ target_width = gr.Slider(512, 1024, step=128, value=768, label="Generated Width", info="")
451
+ cond_size = gr.Slider(256, 384, step=128, value=256, label="Condition Size", info="")
452
+ with gr.Row():
453
+ weight_id = gr.Slider(0.1, 5, step=0.1, value=3, label="weight_id")
454
+ weight_ip = gr.Slider(0.1, 5, step=0.1, value=5, label="weight_ip")
455
+ with gr.Row():
456
+ ip_scale_str = gr.Slider(0.5, 1.5, step=0.01, value=0.85, label="latent_lora_scale")
457
+ vae_lora_scale = gr.Slider(0.5, 1.5, step=0.01, value=1.3, label="vae_lora_scale")
458
+ with gr.Row():
459
+ vae_skip_iter_s1 = gr.Slider(0, 1, step=0.01, value=0.05, label="vae_skip_iter_before")
460
+ vae_skip_iter_s2 = gr.Slider(0, 1, step=0.01, value=0.8, label="vae_skip_iter_after")
461
+
462
+
463
+ with gr.Row():
464
+ weight_id_ip_str = gr.Textbox(
465
+ value="0-1:1/3/5",
466
+ label="weight_id_ip_str",
467
+ interactive=False, visible=False
 
468
  )
469
+ weight_id.change(
470
+ lambda s1, s2: f"0-1:1/{s1}/{s2}",
471
+ inputs=[weight_id, weight_ip],
472
+ outputs=weight_id_ip_str
473
  )
474
+ weight_ip.change(
475
+ lambda s1, s2: f"0-1:1/{s1}/{s2}",
476
+ inputs=[weight_id, weight_ip],
477
+ outputs=weight_id_ip_str
478
+ )
479
+ vae_skip_iter = gr.Textbox(
480
+ value="0-0.05:1,0.8-1:1",
481
+ label="vae_skip_iter",
482
+ interactive=False, visible=False
483
+ )
484
+ vae_skip_iter_s1.change(
485
+ lambda s1, s2: f"0-{s1}:1,{s2}-1:1",
486
+ inputs=[vae_skip_iter_s1, vae_skip_iter_s2],
487
+ outputs=vae_skip_iter
488
+ )
489
+ vae_skip_iter_s2.change(
490
+ lambda s1, s2: f"0-{s1}:1,{s2}-1:1",
491
+ inputs=[vae_skip_iter_s1, vae_skip_iter_s2],
492
+ outputs=vae_skip_iter
493
+ )
494
+
495
+
496
+ with gr.Row():
497
+ db_latent_lora_scale_str = gr.Textbox(
498
+ value="0-1:0.85",
499
+ label="db_latent_lora_scale_str",
500
+ interactive=False, visible=False
501
+ )
502
+ sb_latent_lora_scale_str = gr.Textbox(
503
+ value="0-1:0.85",
504
+ label="sb_latent_lora_scale_str",
505
+ interactive=False, visible=False
506
+ )
507
+ vae_lora_scale_str = gr.Textbox(
508
+ value="0-1:1.3",
509
+ label="vae_lora_scale_str",
510
+ interactive=False, visible=False
511
+ )
512
+ vae_lora_scale.change(
513
+ lambda s: f"0-1:{s}",
514
+ inputs=vae_lora_scale,
515
+ outputs=vae_lora_scale_str
516
+ )
517
+ ip_scale_str.change(
518
+ lambda s: [f"0-1:{s}", f"0-1:{s}"],
519
+ inputs=ip_scale_str,
520
+ outputs=[db_latent_lora_scale_str, sb_latent_lora_scale_str]
521
+ )
522
+
523
+ with gr.Row():
524
+ double_attention = gr.Checkbox(value=False, label="Double Attention", visible=False)
525
+ single_attention = gr.Checkbox(value=True, label="Single Attention", visible=False)
526
 
527
+ clear_btn = gr.Button("清空输入图像")
 
 
 
 
528
  with gr.Row():
529
  for i in range(num_inputs):
530
  image, caption, face_btn, det_btn, vlm_btn, accordion_state, accordion, id_ip_checkbox = create_image_input(i, open=i<2, indexs_state=indexs_state)