# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from torch.nn import Linear, Conv2d, BatchNorm1d, BatchNorm2d, PReLU, ReLU, Sigmoid, Dropout2d, Dropout, AvgPool2d, MaxPool2d, AdaptiveAvgPool2d, Sequential, Module, Parameter import torch.nn.functional as F import torch from collections import namedtuple import math import pdb class Flatten(Module): def forward(self, input): return input.view(input.size(0), -1) def l2_norm(input,axis=1): norm = torch.norm(input,2,axis,True) output = torch.div(input, norm) return output class SEModule(Module): def __init__(self, channels, reduction): super(SEModule, self).__init__() self.avg_pool = AdaptiveAvgPool2d(1) self.fc1 = Conv2d( channels, channels // reduction, kernel_size=1, padding=0 ,bias=False) self.relu = ReLU(inplace=True) self.fc2 = Conv2d( channels // reduction, channels, kernel_size=1, padding=0 ,bias=False) self.sigmoid = Sigmoid() def forward(self, x): module_input = x x = self.avg_pool(x) x = self.fc1(x) x = self.relu(x) x = self.fc2(x) x = self.sigmoid(x) return module_input * x class bottleneck_IR(Module): def __init__(self, in_channel, depth, stride): super(bottleneck_IR, self).__init__() if in_channel == depth: self.shortcut_layer = MaxPool2d(1, stride) else: self.shortcut_layer = Sequential( Conv2d(in_channel, depth, (1, 1), stride ,bias=False), BatchNorm2d(depth)) self.res_layer = Sequential( BatchNorm2d(in_channel), Conv2d(in_channel, depth, (3, 3), (1, 1), 1 ,bias=False), PReLU(depth), Conv2d(depth, depth, (3, 3), stride, 1 ,bias=False), BatchNorm2d(depth)) def forward(self, x): shortcut = self.shortcut_layer(x) res = self.res_layer(x) return res + shortcut class bottleneck_IR_SE(Module): def __init__(self, in_channel, depth, stride): super(bottleneck_IR_SE, self).__init__() if in_channel == depth: self.shortcut_layer = MaxPool2d(1, stride) else: self.shortcut_layer = Sequential( Conv2d(in_channel, depth, (1, 1), stride ,bias=False), BatchNorm2d(depth)) self.res_layer = Sequential( BatchNorm2d(in_channel), Conv2d(in_channel, depth, (3,3), (1,1),1 ,bias=False), PReLU(depth), Conv2d(depth, depth, (3,3), stride, 1 ,bias=False), BatchNorm2d(depth), SEModule(depth,16) ) def forward(self,x): shortcut = self.shortcut_layer(x) res = self.res_layer(x) return res + shortcut class Bottleneck(namedtuple('Block', ['in_channel', 'depth', 'stride'])): '''A named tuple describing a ResNet block.''' def get_block(in_channel, depth, num_units, stride = 2): return [Bottleneck(in_channel, depth, stride)] + [Bottleneck(depth, depth, 1) for i in range(num_units-1)] def get_blocks(num_layers): if num_layers == 50: blocks = [ get_block(in_channel=64, depth=64, num_units = 3), get_block(in_channel=64, depth=128, num_units=4), get_block(in_channel=128, depth=256, num_units=14), get_block(in_channel=256, depth=512, num_units=3) ] elif num_layers == 100: blocks = [ get_block(in_channel=64, depth=64, num_units=3), get_block(in_channel=64, depth=128, num_units=13), get_block(in_channel=128, depth=256, num_units=30), get_block(in_channel=256, depth=512, num_units=3) ] elif num_layers == 152: blocks = [ get_block(in_channel=64, depth=64, num_units=3), get_block(in_channel=64, depth=128, num_units=8), get_block(in_channel=128, depth=256, num_units=36), get_block(in_channel=256, depth=512, num_units=3) ] return blocks class Backbone(Module): def __init__(self, num_layers, drop_ratio, mode='ir'): super(Backbone, self).__init__() assert num_layers in [50, 100, 152], 'num_layers should be 50,100, or 152' assert mode in ['ir', 'ir_se'], 'mode should be ir or ir_se' blocks = get_blocks(num_layers) if mode == 'ir': unit_module = bottleneck_IR elif mode == 'ir_se': unit_module = bottleneck_IR_SE self.input_layer = Sequential(Conv2d(3, 64, (3, 3), 1, 1 ,bias=False), BatchNorm2d(64), PReLU(64)) self.output_layer = Sequential(BatchNorm2d(512), Dropout(drop_ratio), Flatten(), Linear(512 * 7 * 7, 512), BatchNorm1d(512)) modules = [] for block in blocks: for bottleneck in block: modules.append( unit_module(bottleneck.in_channel, bottleneck.depth, bottleneck.stride)) self.body = Sequential(*modules) def forward(self,x): x = self.input_layer(x) x = self.body(x) x = self.output_layer(x) return l2_norm(x)