# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import time from tqdm import tqdm from glob import glob import argparse import math import random import numpy as np from PIL import Image from collections import defaultdict import torch import torch.distributed as dist from src.flux.generate import seed_everything from src.utils.data_utils import get_train_config, get_rank_and_worldsize from src.utils.data_utils import pad_to_square, pad_to_target, json_dump, json_load, split_grid, image_grid, pil2tensor import shutil from eval.tools.face_id import FaceID def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("--input_dir", type=str, default="../examples") parser.add_argument("--test_list_name", type=str, default="base_test_list_200") args = parser.parse_args() return args def main(): args = parse_args() print(args) local_rank, global_rank, world_size = get_rank_and_worldsize() print(f"local_rank={local_rank}, global_rank={global_rank}, world_size={world_size}") is_local_main_process = local_rank == 0 is_main_process = global_rank == 0 torch.cuda.set_device(local_rank) dtype = torch.bfloat16 device = "cuda" run_name = time.strftime("%m%d_$H") face_score_model = FaceID(device) test_list = json_load(f"eval/tools/{args.test_list_name}.json", 'utf-8') images = list(glob(f"{args.input_dir}/*.png")) print(len(test_list), len(images)) assert len(test_list) == len(images) num_samples = len(test_list) num_ranks = world_size assert local_rank == global_rank if world_size > 1: num_per_rank = math.ceil(num_samples / num_ranks) test_list_indices = list(range(num_samples)) random.seed(0) random.shuffle(test_list_indices) local_test_list_indices = test_list_indices[local_rank*num_per_rank:(local_rank+1)*num_per_rank] os.environ['CUDA_VISIBLE_DEVICES'] = str(local_rank % 8) print(f"[worker {local_rank}] got {len(local_test_list_indices)} local samples") run_name = time.strftime("%Y%m%d-%H") temp_dir = os.path.join(args.input_dir, f"eval_id_temp_{run_name}") if is_main_process: if os.path.exists(temp_dir): shutil.rmtree(temp_dir) os.makedirs(temp_dir) rank_json = {} with torch.no_grad(): for i in tqdm(local_test_list_indices): test_sample = test_list[i] real_paths, real_faces, real_names = [], [], [] for x in test_sample["modulation"][0]["src_inputs"]: img_path = x["image_path"] name = "_".join(img_path.split("/")[-2:]) if name.startswith("human"): real_paths.append(img_path) try: real_faces.append(Image.open(img_path).convert("RGB")) real_names.append(name) except Exception as e: print(f"Failed to open image {img_path}, error message: {e}") gen_img_path = list(filter(lambda x: x.split("/")[-1].split("_")[0] == str(i), images))[0] rank_json[i] = [] try: for j, gen_img in enumerate(split_grid(Image.open(gen_img_path))): rank_json[i].append({}) if len(real_names) > 0: gen_bboxes = face_score_model.detect( (pil2tensor(gen_img).unsqueeze(0) * 255).to(torch.uint8) ) gen_faces = [gen_img.crop(bbox) for bbox in gen_bboxes] for k, (real_name, real_face) in enumerate(zip(real_names, real_faces)): if len(gen_faces) > 0: score = max([face_score_model(real_face, x) for x in gen_faces]) else: score = 0 rank_json[i][j][real_name] = score except Exception as e: print(f"Failed to process image {gen_img_path}, error message: {e}") json_dump(rank_json, f"{temp_dir}/scores_{global_rank}.json", "utf-8") if is_main_process: while len(glob(f"{temp_dir}/scores_*.json")) < world_size: time.sleep(5) time.sleep(5) # wait for the file writting to be finished merged_json = {} id_scores = defaultdict(list) all_scores = [] for rank_path in glob(f"{temp_dir}/scores_*.json"): rank_json = json_load(rank_path, "utf-8") merged_json.update(rank_json) for i, grid_json in merged_json.items(): for img_json in grid_json: for id_name, id_score in img_json.items(): id_scores[id_name].append(id_score) for id_name in id_scores: all_scores += id_scores[id_name] id_scores[id_name] = np.mean(id_scores[id_name]) print(id_name, id_scores[id_name]) json_dump(merged_json, f"{args.input_dir}/id_scores_{run_name}.json", "utf-8") final_id_score = np.mean(all_scores) lines_to_write = [ f"ID Score: {final_id_score:.2f}\n" ] print(lines_to_write[0]) for id_name, score in id_scores.items(): lines_to_write.append(f"{id_name}: {score:.2f}\n") with open(f"{args.input_dir}/id_scores_{run_name}.txt", "w") as f: f.writelines(lines_to_write) shutil.rmtree(temp_dir) if __name__ == "__main__": main()