# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import time from tqdm import tqdm import argparse import math import random import torch import torch.distributed as dist from src.flux.generate import generate, generate_from_test_sample, seed_everything from src.flux.pipeline_tools import CustomFluxPipeline, load_modulation_adapter, load_dit_lora from src.utils.data_utils import get_train_config, get_rank_and_worldsize from src.utils.data_utils import pad_to_square, pad_to_target, json_dump, json_load, image_grid import shutil def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("--config_name", type=str, default="") parser.add_argument("--model_path", type=str, default="") parser.add_argument("--target_size", type=int, default=512) parser.add_argument("--condition_size", type=int, default=128) parser.add_argument("--save_name", type=str, default="../examples") parser.add_argument("--test_list_name", type=str, default="base_test_list_200") args = parser.parse_args() return args def main(): args = parse_args() print(args) local_rank, global_rank, world_size = get_rank_and_worldsize() print(f"local_rank={local_rank}, global_rank={global_rank}, world_size={world_size}") is_local_main_process = local_rank == 0 is_main_process = global_rank == 0 torch.cuda.set_device(local_rank) dtype = torch.bfloat16 device = "cuda" config_path = args.config_name config = get_train_config(config_path) config["train"]["dataset"]["val_condition_size"] = args.condition_size config["train"]["dataset"]["val_target_size"] = args.target_size config["model"]["layer_control"] = False run_name = time.strftime("%m%d") num_images = 4 ckpt_root = args.model_path save_dir = args.save_name model = CustomFluxPipeline(config, device, ckpt_root=ckpt_root, torch_dtype=dtype) model.pipe.set_progress_bar_config(leave=False) model.config = config if "py" in args.test_list_name: test_list = globals()[args.test_list_name.split("_py")[0]] test_list = test_list[5:11] + test_list[17:23] # TODO only for debug else: test_list = json_load(f"eval/tools/{args.test_list_name}.json", 'utf-8') num_samples = len(test_list) num_ranks = world_size assert local_rank == global_rank if world_size > 1: num_per_rank = math.ceil(num_samples / num_ranks) test_list_indices = list(range(num_samples)) random.seed(0) random.shuffle(test_list_indices) local_test_list_indices = test_list_indices[local_rank*num_per_rank:(local_rank+1)*num_per_rank] print(f"[worker {local_rank}] got {len(local_test_list_indices)} local samples") model.clear_modulation_adapters() model.pipe.transformer.unload_lora() modulation_adapter = load_modulation_adapter(model, config, dtype, device, f"{ckpt_root}/modulation_adapter", is_training=False) model.add_modulation_adapter(modulation_adapter) if config["model"]["use_dit_lora"]: load_dit_lora(model, model.pipe, config, dtype, device, f"{ckpt_root}", is_training=False) os.makedirs(save_dir, exist_ok=True) # 复制配置文件到 save_dir import shutil config_dest_path = os.path.join(save_dir, os.path.basename(config_path)) shutil.copy(config_path, config_dest_path) print(f"已复制配置文件到 {config_dest_path}") for i in tqdm(local_test_list_indices): test_sample = test_list[i] prompt_name = test_sample['prompt'][:40].replace(" ","_") save_path = f"{save_dir}/{i}_{prompt_name}.png" if os.path.exists(save_path): print(f"文件 {save_path} 已存在,跳过保存") continue image = generate_from_test_sample(test_sample, model.pipe, model.config, num_images=num_images, store_attn_map=False, use_idip=True) if isinstance(image, list): image = image_grid(image, len(image) // 2, 2) # print(f"{test_sample['prompt']}") image.save(save_path) print(f"save results {i} to: {save_path}") del image del model if __name__ == "__main__": main()