# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates # Copyright 2024 Black Forest Labs and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from typing import List, Union, Optional, Tuple, Dict, Any, Callable from diffusers.models.attention_processor import Attention, F from .lora_controller import enable_lora from einops import rearrange import math from diffusers.models.embeddings import apply_rotary_emb def scaled_dot_product_attention(query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False, scale=None) -> torch.Tensor: # Efficient implementation equivalent to the following: L, S = query.size(-2), key.size(-2) B = query.size(0) scale_factor = 1 / math.sqrt(query.size(-1)) if scale is None else scale attn_bias = torch.zeros(B, 1, L, S, dtype=query.dtype, device=query.device) if is_causal: assert attn_mask is None assert False temp_mask = torch.ones(L, S, dtype=torch.bool).tril(diagonal=0) attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf")) attn_bias.to(query.dtype) if attn_mask is not None: if attn_mask.dtype == torch.bool: attn_bias.masked_fill_(attn_mask.logical_not(), float("-inf")) else: attn_bias += attn_mask attn_weight = query @ key.transpose(-2, -1) * scale_factor attn_weight += attn_bias.to(attn_weight.device) attn_weight = torch.softmax(attn_weight, dim=-1) return torch.dropout(attn_weight, dropout_p, train=True) @ value, attn_weight def attn_forward( attn: Attention, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor = None, condition_latents: torch.FloatTensor = None, text_cond_mask: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, cond_rotary_emb: Optional[torch.Tensor] = None, model_config: Optional[Dict[str, Any]] = {}, store_attn_map: bool = False, latent_height: Optional[int] = None, timestep: Optional[torch.Tensor] = None, last_attn_map: Optional[torch.Tensor] = None, condition_sblora_weight: Optional[float] = None, latent_sblora_weight: Optional[float] = None, ) -> torch.FloatTensor: batch_size, _, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) is_sblock = encoder_hidden_states is None is_dblock = not is_sblock with enable_lora( (attn.to_q, attn.to_k, attn.to_v), (is_dblock and model_config["latent_lora"]) or (is_sblock and model_config["sblock_lora"]), latent_sblora_weight=latent_sblora_weight ): query = attn.to_q(hidden_states) key = attn.to_k(hidden_states) value = attn.to_v(hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states` if encoder_hidden_states is not None: # `context` projections. with enable_lora((attn.add_q_proj, attn.add_k_proj, attn.add_v_proj), model_config["text_lora"]): encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states) encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_added_q is not None: encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj) if attn.norm_added_k is not None: encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj) # attention query = torch.cat([encoder_hidden_states_query_proj, query], dim=2) key = torch.cat([encoder_hidden_states_key_proj, key], dim=2) value = torch.cat([encoder_hidden_states_value_proj, value], dim=2) if image_rotary_emb is not None: query = apply_rotary_emb(query, image_rotary_emb) key = apply_rotary_emb(key, image_rotary_emb) if condition_latents is not None: assert condition_latents.shape[0] == batch_size cond_length = condition_latents.shape[1] cond_lora_activate = (is_dblock and model_config["use_condition_dblock_lora"]) or (is_sblock and model_config["use_condition_sblock_lora"]) with enable_lora( (attn.to_q, attn.to_k, attn.to_v), dit_activated=not cond_lora_activate, cond_activated=cond_lora_activate, latent_sblora_weight=condition_sblora_weight #TODO implementation for condition lora not share ): cond_query = attn.to_q(condition_latents) cond_key = attn.to_k(condition_latents) cond_value = attn.to_v(condition_latents) cond_query = cond_query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) cond_key = cond_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) cond_value = cond_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_q is not None: cond_query = attn.norm_q(cond_query) if attn.norm_k is not None: cond_key = attn.norm_k(cond_key) if cond_rotary_emb is not None: cond_query = apply_rotary_emb(cond_query, cond_rotary_emb) cond_key = apply_rotary_emb(cond_key, cond_rotary_emb) if model_config.get("text_cond_attn", False): if encoder_hidden_states is not None: assert text_cond_mask is not None img_length = hidden_states.shape[1] seq_length = encoder_hidden_states_query_proj.shape[2] assert len(text_cond_mask.shape) == 2 or len(text_cond_mask.shape) == 3 if len(text_cond_mask.shape) == 2: text_cond_mask = text_cond_mask.unsqueeze(-1) N = text_cond_mask.shape[-1] # num_condition else: raise NotImplementedError() query = torch.cat([query, cond_query], dim=2) # (B, 24, S+HW+NC) key = torch.cat([key, cond_key], dim=2) value = torch.cat([value, cond_value], dim=2) assert query.shape[2] == key.shape[2] assert query.shape[2] == cond_length + img_length + seq_length attention_mask = torch.ones(batch_size, 1, query.shape[2], key.shape[2], device=query.device, dtype=torch.bool) attention_mask[..., -cond_length:, :-cond_length] = False attention_mask[..., :-cond_length, -cond_length:] = False if encoder_hidden_states is not None: tokens_per_cond = cond_length // N for i in range(batch_size): for j in range(N): start = seq_length + img_length + tokens_per_cond * j attention_mask[i, 0, :seq_length, start:start+tokens_per_cond] = text_cond_mask[i, :, j].unsqueeze(-1) elif model_config.get("union_cond_attn", False): query = torch.cat([query, cond_query], dim=2) # (B, 24, S+HW+NC) key = torch.cat([key, cond_key], dim=2) value = torch.cat([value, cond_value], dim=2) attention_mask = torch.ones(batch_size, 1, query.shape[2], key.shape[2], device=query.device, dtype=torch.bool) cond_length = condition_latents.shape[1] assert len(text_cond_mask.shape) == 2 or len(text_cond_mask.shape) == 3 if len(text_cond_mask.shape) == 2: text_cond_mask = text_cond_mask.unsqueeze(-1) N = text_cond_mask.shape[-1] # num_condition tokens_per_cond = cond_length // N seq_length = 0 if encoder_hidden_states is not None: seq_length = encoder_hidden_states_query_proj.shape[2] img_length = hidden_states.shape[1] else: seq_length = 128 # TODO, pass it here img_length = hidden_states.shape[1] - seq_length if not model_config.get("cond_cond_cross_attn", True): # no cross attention between different conds cond_start = seq_length + img_length attention_mask[:, :, cond_start:, cond_start:] = False for j in range(N): start = cond_start + tokens_per_cond * j end = cond_start + tokens_per_cond * (j + 1) attention_mask[..., start:end, start:end] = True # double block if encoder_hidden_states is not None: # no cross attention attention_mask[..., :-cond_length, -cond_length:] = False if model_config.get("use_attention_double", False) and last_attn_map is not None: attention_mask = torch.zeros(batch_size, 1, query.shape[2], key.shape[2], device=query.device, dtype=torch.bfloat16) last_attn_map = last_attn_map.to(query.device) attention_mask[..., seq_length:-cond_length, :seq_length] = torch.log(last_attn_map/last_attn_map.mean()*model_config["use_atten_lambda"]).view(-1, seq_length) # single block else: # print(last_attn_map) if model_config.get("use_attention_single", False) and last_attn_map is not None: attention_mask = torch.zeros(batch_size, 1, query.shape[2], key.shape[2], device=query.device, dtype=torch.bfloat16) attention_mask[..., :seq_length, -cond_length:] = float('-inf') # 确保 use_atten_lambda 是列表 use_atten_lambdas = model_config["use_atten_lambda"] if len(model_config["use_atten_lambda"])!=1 else model_config["use_atten_lambda"] * (N+1) attention_mask[..., -cond_length:, seq_length:-cond_length] = math.log(use_atten_lambdas[0]) last_attn_map = last_attn_map.to(query.device) cond2latents = [] for i in range(batch_size): AM = last_attn_map[i] # (H, W, S) for j in range(N): start = seq_length + img_length + tokens_per_cond * j mask = text_cond_mask[i, :, j] # (S,) weighted_AM = AM * mask.unsqueeze(0).unsqueeze(0) # 扩展 mask 维度以匹配 AM cond2latent = weighted_AM.mean(-1) if model_config.get("attention_norm", "mean") == "max": cond2latent = cond2latent / cond2latent.max() # 归一化 else: cond2latent = cond2latent / cond2latent.mean() # 归一化 cond2latent = cond2latent.view(-1,) # (WH,) # 使用对应 condition 的 lambda 值 current_lambda = use_atten_lambdas[j+1] # 将 cond2latent 复制到 attention_mask[i, 0, :seq_length, start:start+tokens_per_cond] attention_mask[i, 0, seq_length:-cond_length, start:start+tokens_per_cond] = torch.log(current_lambda * cond2latent.unsqueeze(-1)) # 将 text_cond_mask[i, :, j].unsqueeze(-1) 为 true 的位置设置为当前 lambda 值 cond = mask.unsqueeze(-1).expand(-1, tokens_per_cond) sub_mask = attention_mask[i, 0, :seq_length, start:start+tokens_per_cond] attention_mask[i, 0, :seq_length, start:start+tokens_per_cond] = torch.where(cond, math.log(current_lambda), sub_mask) cond2latents.append( cond2latent.reshape(latent_height, -1).detach().cpu() ) if store_attn_map: if not hasattr(attn, "cond2latents"): attn.cond2latents = [] attn.cond_timesteps = [] attn.cond2latents.append(torch.stack(cond2latents, dim=0)) # (N, H, W) attn.cond_timesteps.append(timestep.cpu()) pass else: raise NotImplementedError() if hasattr(attn, "c_factor"): assert False attention_mask = torch.zeros( query.shape[2], key.shape[2], device=query.device, dtype=query.dtype ) bias = torch.log(attn.c_factor[0]) attention_mask[-cond_length:, :-cond_length] = bias attention_mask[:-cond_length, -cond_length:] = bias #################################################################################################### if store_attn_map and encoder_hidden_states is not None: seq_length = encoder_hidden_states_query_proj.shape[2] img_length = hidden_states.shape[1] hidden_states, attention_probs = scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) # (B, 24, S+HW, S+HW) -> (B, 24, HW, S) t2i_attention_probs = attention_probs[:, :, seq_length:seq_length+img_length, :seq_length] # (B, 24, S+HW, S+HW) -> (B, 24, S, HW) -> (B, 24, HW, S) i2t_attention_probs = attention_probs[:, :, :seq_length, seq_length:seq_length+img_length].transpose(-1, -2) if not hasattr(attn, "attn_maps"): attn.attn_maps = [] attn.timestep = [] attn.attn_maps.append( ( rearrange(t2i_attention_probs, 'B attn_head (H W) attn_dim -> B attn_head H W attn_dim', H=latent_height), rearrange(i2t_attention_probs, 'B attn_head (H W) attn_dim -> B attn_head H W attn_dim', H=latent_height), ) ) attn.timestep.append(timestep.cpu()) has_nan = torch.isnan(hidden_states).any().item() if has_nan: print("[attn_forward] detect nan hidden_states in store_attn_map") else: hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) has_nan = torch.isnan(hidden_states).any().item() if has_nan: print("[attn_forward] detect nan hidden_states") #################################################################################################### hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim).to(query.dtype) if encoder_hidden_states is not None: if condition_latents is not None: encoder_hidden_states, hidden_states, condition_latents = ( hidden_states[:, : encoder_hidden_states.shape[1]], hidden_states[ :, encoder_hidden_states.shape[1] : -condition_latents.shape[1] ], hidden_states[:, -condition_latents.shape[1] :], ) if model_config.get("latent_cond_by_text_attn", False): # hidden_states += add_latent # (B, HW, D) hidden_states = new_hidden_states # (B, HW, D) else: encoder_hidden_states, hidden_states = ( hidden_states[:, : encoder_hidden_states.shape[1]], hidden_states[:, encoder_hidden_states.shape[1] :], ) with enable_lora((attn.to_out[0],), model_config["latent_lora"]): hidden_states = attn.to_out[0](hidden_states) # linear proj hidden_states = attn.to_out[1](hidden_states) # dropout with enable_lora((attn.to_add_out,), model_config["text_lora"]): encoder_hidden_states = attn.to_add_out(encoder_hidden_states) if condition_latents is not None: cond_lora_activate = model_config["use_condition_dblock_lora"] with enable_lora( (attn.to_out[0],), dit_activated=not cond_lora_activate, cond_activated=cond_lora_activate, ): condition_latents = attn.to_out[0](condition_latents) condition_latents = attn.to_out[1](condition_latents) return ( (hidden_states, encoder_hidden_states, condition_latents) if condition_latents is not None else (hidden_states, encoder_hidden_states) ) elif condition_latents is not None: hidden_states, condition_latents = ( hidden_states[:, : -condition_latents.shape[1]], hidden_states[:, -condition_latents.shape[1] :], ) return hidden_states, condition_latents else: return hidden_states def set_delta_by_start_end( start_ends, src_delta_emb, src_delta_emb_pblock, delta_emb, delta_emb_pblock, delta_emb_mask, ): for (i, j, src_s, src_e, tar_s, tar_e) in start_ends: if src_delta_emb is not None: delta_emb[i, tar_s:tar_e] = src_delta_emb[j, src_s:src_e] if src_delta_emb_pblock is not None: delta_emb_pblock[i, tar_s:tar_e] = src_delta_emb_pblock[j, src_s:src_e] delta_emb_mask[i, tar_s:tar_e] = True return delta_emb, delta_emb_pblock, delta_emb_mask def norm1_context_forward( self, x: torch.Tensor, condition_latents: Optional[torch.Tensor] = None, timestep: Optional[torch.Tensor] = None, class_labels: Optional[torch.LongTensor] = None, hidden_dtype: Optional[torch.dtype] = None, emb: Optional[torch.Tensor] = None, delta_emb: Optional[torch.Tensor] = None, delta_emb_cblock: Optional[torch.Tensor] = None, delta_emb_mask: Optional[torch.Tensor] = None, delta_start_ends = None, mod_adapter = None, ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: batch_size, seq_length = x.shape[:2] if mod_adapter is not None: assert False if delta_emb is None: emb = self.linear(self.silu(emb)) # (B, 3072) -> (B, 18432) emb = emb.unsqueeze(1) # (B, 1, 18432) shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb.chunk(6, dim=-1) # (B, 1, 3072) x = self.norm(x) * (1 + scale_msa) + shift_msa # (B, 1, 3072) return x, gate_msa, shift_mlp, scale_mlp, gate_mlp else: # (B, 3072) > (B, 18432) -> (B, S, 18432) emb_orig = self.linear(self.silu(emb)).unsqueeze(1).expand((-1, seq_length, -1)) # (B, 3072) -> (B, 1, 3072) -> (B, S, 3072) -> (B, S, 18432) if delta_emb_cblock is None: emb_new = self.linear(self.silu(emb.unsqueeze(1) + delta_emb)) else: emb_new = self.linear(self.silu(emb.unsqueeze(1) + delta_emb + delta_emb_cblock)) emb = torch.where(delta_emb_mask.unsqueeze(-1), emb_new, emb_orig) # (B, S, 18432) shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb.chunk(6, dim=-1) # (B, S, 3072) x = self.norm(x) * (1 + scale_msa) + shift_msa # (B, S, 3072) return x, gate_msa, shift_mlp, scale_mlp, gate_mlp def norm1_forward( self, x: torch.Tensor, timestep: Optional[torch.Tensor] = None, class_labels: Optional[torch.LongTensor] = None, hidden_dtype: Optional[torch.dtype] = None, emb: Optional[torch.Tensor] = None, delta_emb: Optional[torch.Tensor] = None, delta_emb_cblock: Optional[torch.Tensor] = None, delta_emb_mask: Optional[torch.Tensor] = None, t2i_attn_map: Optional[torch.Tensor] = None, ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: if delta_emb is None: emb = self.linear(self.silu(emb)) # (B, 3072) -> (B, 18432) emb = emb.unsqueeze(1) # (B, 1, 18432) shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb.chunk(6, dim=-1) # (B, 1, 3072) x = self.norm(x) * (1 + scale_msa) + shift_msa # (B, 1, 3072) return x, gate_msa, shift_mlp, scale_mlp, gate_mlp else: raise NotImplementedError() batch_size, HW = x.shape[:2] seq_length = t2i_attn_map.shape[-1] # (B, 3072) > (B, 18432) -> (B, S, 18432) emb_orig = self.linear(self.silu(emb)).unsqueeze(1).expand((-1, seq_length, -1)) # (B, 3072) -> (B, 1, 3072) -> (B, S, 3072) -> (B, S, 18432) if delta_emb_cblock is None: emb_new = self.linear(self.silu(emb.unsqueeze(1) + delta_emb)) else: emb_new = self.linear(self.silu(emb.unsqueeze(1) + delta_emb + delta_emb_cblock)) # attn_weight (B, HW, S) emb = torch.where(delta_emb_mask.unsqueeze(-1), emb_new, emb_orig) # (B, S, 18432) emb = t2i_attn_map @ emb # (B, HW, 18432) shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb.chunk(6, dim=-1) # (B, HW, 3072) x = self.norm(x) * (1 + scale_msa) + shift_msa # (B, HW, 3072) return x, gate_msa, shift_mlp, scale_mlp, gate_mlp def block_forward( self, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor, condition_latents: torch.FloatTensor, temb: torch.FloatTensor, cond_temb: torch.FloatTensor, text_cond_mask: Optional[torch.FloatTensor] = None, delta_emb: Optional[torch.FloatTensor] = None, delta_emb_cblock: Optional[torch.FloatTensor] = None, delta_emb_mask: Optional[torch.Tensor] = None, delta_start_ends = None, cond_rotary_emb=None, image_rotary_emb=None, model_config: Optional[Dict[str, Any]] = {}, store_attn_map: bool = False, use_text_mod: bool = True, use_img_mod: bool = False, mod_adapter = None, latent_height: Optional[int] = None, timestep: Optional[torch.Tensor] = None, last_attn_map: Optional[torch.Tensor] = None, ): batch_size = hidden_states.shape[0] use_cond = condition_latents is not None train_partial_latent_lora = model_config.get("train_partial_latent_lora", False) train_partial_text_lora = model_config.get("train_partial_text_lora", False) if train_partial_latent_lora: train_partial_latent_lora_layers = model_config.get("train_partial_latent_lora_layers", "") activate_norm1 = activate_ff = True if "norm1" not in train_partial_latent_lora_layers: activate_norm1 = False if "ff" not in train_partial_latent_lora_layers: activate_ff = False if train_partial_text_lora: train_partial_text_lora_layers = model_config.get("train_partial_text_lora_layers", "") activate_norm1_context = activate_ff_context = True if "norm1" not in train_partial_text_lora_layers: activate_norm1_context = False if "ff" not in train_partial_text_lora_layers: activate_ff_context = False if use_cond: cond_lora_activate = model_config["use_condition_dblock_lora"] with enable_lora( (self.norm1.linear,), dit_activated=activate_norm1 if train_partial_latent_lora else not cond_lora_activate, cond_activated=cond_lora_activate, ): norm_condition_latents, cond_gate_msa, cond_shift_mlp, cond_scale_mlp, cond_gate_mlp = ( norm1_forward( self.norm1, condition_latents, emb=cond_temb, ) ) delta_emb_img = delta_emb_img_cblock = None if use_img_mod and use_text_mod: if delta_emb is not None: delta_emb_img, delta_emb = delta_emb.chunk(2, dim=-1) if delta_emb_cblock is not None: delta_emb_img_cblock, delta_emb_cblock = delta_emb_cblock.chunk(2, dim=-1) with enable_lora((self.norm1.linear,), activate_norm1 if train_partial_latent_lora else model_config["latent_lora"]): if use_img_mod and encoder_hidden_states is not None: with torch.no_grad(): attn = self.attn norm_img = self.norm1(hidden_states, emb=temb)[0] norm_text = self.norm1_context(encoder_hidden_states, emb=temb)[0] img_query = attn.to_q(norm_img) img_key = attn.to_k(norm_img) text_query = attn.add_q_proj(norm_text) text_key = attn.add_k_proj(norm_text) inner_dim = img_key.shape[-1] head_dim = inner_dim // attn.heads img_query = img_query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # (B, N, HW, D) img_key = img_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # (B, N, HW, D) text_query = text_query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # (B, N, S, D) text_key = text_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # (B, N, S, D) if attn.norm_q is not None: img_query = attn.norm_q(img_query) if attn.norm_added_q is not None: text_query = attn.norm_added_q(text_query) if attn.norm_k is not None: img_key = attn.norm_k(img_key) if attn.norm_added_k is not None: text_key = attn.norm_added_k(text_key) query = torch.cat([text_query, img_query], dim=2) # (B, N, S+HW, D) key = torch.cat([text_key, img_key], dim=2) # (B, N, S+HW, D) if image_rotary_emb is not None: query = apply_rotary_emb(query, image_rotary_emb) key = apply_rotary_emb(key, image_rotary_emb) seq_length = text_query.shape[2] scale_factor = 1 / math.sqrt(query.size(-1)) t2i_attn_map = query @ key.transpose(-2, -1) * scale_factor # (B, N, S+HW, S+HW) t2i_attn_map = t2i_attn_map.mean(1)[:, seq_length:, :seq_length] # (B, S+HW, S+HW) -> (B, HW, S) t2i_attn_map = torch.softmax(t2i_attn_map, dim=-1) # (B, HW, S) else: t2i_attn_map = None norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( norm1_forward( self.norm1, hidden_states, emb=temb, delta_emb=delta_emb_img, delta_emb_cblock=delta_emb_img_cblock, delta_emb_mask=delta_emb_mask, t2i_attn_map=t2i_attn_map, ) ) # Modulation for double block with enable_lora((self.norm1_context.linear,), activate_norm1_context if train_partial_text_lora else model_config["text_lora"]): norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = ( norm1_context_forward( self.norm1_context, encoder_hidden_states, emb=temb, delta_emb=delta_emb if use_text_mod else None, delta_emb_cblock=delta_emb_cblock if use_text_mod else None, delta_emb_mask=delta_emb_mask if use_text_mod else None, delta_start_ends=delta_start_ends if use_text_mod else None, mod_adapter=mod_adapter, condition_latents=condition_latents, ) ) # Attention. result = attn_forward( self.attn, model_config=model_config, hidden_states=norm_hidden_states, encoder_hidden_states=norm_encoder_hidden_states, condition_latents=norm_condition_latents if use_cond else None, text_cond_mask=text_cond_mask if use_cond else None, image_rotary_emb=image_rotary_emb, cond_rotary_emb=cond_rotary_emb if use_cond else None, store_attn_map=store_attn_map, latent_height=latent_height, timestep=timestep, last_attn_map=last_attn_map, ) attn_output, context_attn_output = result[:2] cond_attn_output = result[2] if use_cond else None # Process attention outputs for the `hidden_states`. # 1. hidden_states attn_output = gate_msa * attn_output # NOTE: changed by img mod hidden_states = hidden_states + attn_output # 2. encoder_hidden_states context_attn_output = c_gate_msa * context_attn_output # NOTE: changed by delta_temb encoder_hidden_states = encoder_hidden_states + context_attn_output # 3. condition_latents if use_cond: cond_attn_output = cond_gate_msa * cond_attn_output # NOTE: changed by img mod condition_latents = condition_latents + cond_attn_output if model_config.get("add_cond_attn", False): hidden_states += cond_attn_output # LayerNorm + MLP. # 1. hidden_states norm_hidden_states = self.norm2(hidden_states) norm_hidden_states = ( norm_hidden_states * (1 + scale_mlp) + shift_mlp # NOTE: changed by img mod ) # 2. encoder_hidden_states norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states) norm_encoder_hidden_states = ( norm_encoder_hidden_states * (1 + c_scale_mlp) + c_shift_mlp # NOTE: changed by delta_temb ) # 3. condition_latents if use_cond: norm_condition_latents = self.norm2(condition_latents) norm_condition_latents = ( norm_condition_latents * (1 + cond_scale_mlp) + cond_shift_mlp # NOTE: changed by img mod ) # Feed-forward. with enable_lora((self.ff.net[2],), activate_ff if train_partial_latent_lora else model_config["latent_lora"]): # 1. hidden_states ff_output = self.ff(norm_hidden_states) ff_output = gate_mlp * ff_output # NOTE: changed by img mod # 2. encoder_hidden_states with enable_lora((self.ff_context.net[2],), activate_ff_context if train_partial_text_lora else model_config["text_lora"]): context_ff_output = self.ff_context(norm_encoder_hidden_states) context_ff_output = c_gate_mlp * context_ff_output # NOTE: changed by delta_temb # 3. condition_latents if use_cond: cond_lora_activate = model_config["use_condition_dblock_lora"] with enable_lora( (self.ff.net[2],), dit_activated=activate_ff if train_partial_latent_lora else not cond_lora_activate, cond_activated=cond_lora_activate, ): cond_ff_output = self.ff(norm_condition_latents) cond_ff_output = cond_gate_mlp * cond_ff_output # NOTE: changed by img mod # Process feed-forward outputs. hidden_states = hidden_states + ff_output encoder_hidden_states = encoder_hidden_states + context_ff_output if use_cond: condition_latents = condition_latents + cond_ff_output # Clip to avoid overflow. if encoder_hidden_states.dtype == torch.float16: encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504) return encoder_hidden_states, hidden_states, condition_latents if use_cond else None def single_norm_forward( self, x: torch.Tensor, timestep: Optional[torch.Tensor] = None, class_labels: Optional[torch.LongTensor] = None, hidden_dtype: Optional[torch.dtype] = None, emb: Optional[torch.Tensor] = None, delta_emb: Optional[torch.Tensor] = None, delta_emb_cblock: Optional[torch.Tensor] = None, delta_emb_mask: Optional[torch.Tensor] = None, ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: if delta_emb is None: emb = self.linear(self.silu(emb)) # (B, 3072) -> (B, 9216) emb = emb.unsqueeze(1) # (B, 1, 9216) shift_msa, scale_msa, gate_msa = emb.chunk(3, dim=-1) # (B, 1, 3072) x = self.norm(x) * (1 + scale_msa) + shift_msa # (B, S, 3072) * (B, 1, 3072) return x, gate_msa else: img_text_seq_length = x.shape[1] # S+ text_seq_length = delta_emb_mask.shape[1] # S # (B, 3072) -> (B, 9216) -> (B, S+, 9216) emb_orig = self.linear(self.silu(emb)).unsqueeze(1).expand((-1, img_text_seq_length, -1)) # (B, 3072) -> (B, 1, 3072) -> (B, S, 3072) -> (B, S, 9216) if delta_emb_cblock is None: emb_new = self.linear(self.silu(emb.unsqueeze(1) + delta_emb)) else: emb_new = self.linear(self.silu(emb.unsqueeze(1) + delta_emb + delta_emb_cblock)) emb_text = torch.where(delta_emb_mask.unsqueeze(-1), emb_new, emb_orig[:, :text_seq_length]) # (B, S, 9216) emb_img = emb_orig[:, text_seq_length:] # (B, s, 9216) emb = torch.cat([emb_text, emb_img], dim=1) # (B, S+, 9216) shift_msa, scale_msa, gate_msa = emb.chunk(3, dim=-1) # (B, S+, 3072) x = self.norm(x) * (1 + scale_msa) + shift_msa # (B, S+, 3072) return x, gate_msa def single_block_forward( self, hidden_states: torch.FloatTensor, temb: torch.FloatTensor, image_rotary_emb=None, condition_latents: torch.FloatTensor = None, text_cond_mask: torch.FloatTensor = None, cond_temb: torch.FloatTensor = None, delta_emb: Optional[torch.FloatTensor] = None, delta_emb_cblock: Optional[torch.FloatTensor] = None, delta_emb_mask: Optional[torch.Tensor] = None, use_text_mod: bool = True, use_img_mod: bool = False, cond_rotary_emb=None, latent_height: Optional[int] = None, timestep: Optional[torch.Tensor] = None, store_attn_map: bool = False, model_config: Optional[Dict[str, Any]] = {}, last_attn_map: Optional[torch.Tensor] = None, latent_sblora_weight=None, condition_sblora_weight=None, ): using_cond = condition_latents is not None residual = hidden_states train_partial_lora = model_config.get("train_partial_lora", False) if train_partial_lora: train_partial_lora_layers = model_config.get("train_partial_lora_layers", "") activate_norm = activate_projmlp = activate_projout = True if "norm" not in train_partial_lora_layers: activate_norm = False if "projmlp" not in train_partial_lora_layers: activate_projmlp = False if "projout" not in train_partial_lora_layers: activate_projout = False with enable_lora((self.norm.linear,), activate_norm if train_partial_lora else model_config["sblock_lora"], latent_sblora_weight=latent_sblora_weight): # Modulation for single block norm_hidden_states, gate = single_norm_forward( self.norm, hidden_states, emb=temb, delta_emb=delta_emb if use_text_mod else None, delta_emb_cblock=delta_emb_cblock if use_text_mod else None, delta_emb_mask=delta_emb_mask if use_text_mod else None, ) with enable_lora((self.proj_mlp,), activate_projmlp if train_partial_lora else model_config["sblock_lora"], latent_sblora_weight=latent_sblora_weight): mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states)) if using_cond: cond_lora_activate = model_config["use_condition_sblock_lora"] with enable_lora( (self.norm.linear,), dit_activated=activate_norm if train_partial_lora else not cond_lora_activate, cond_activated=cond_lora_activate, latent_sblora_weight=condition_sblora_weight ): residual_cond = condition_latents norm_condition_latents, cond_gate = self.norm(condition_latents, emb=cond_temb) with enable_lora( (self.proj_mlp,), dit_activated=activate_projmlp if train_partial_lora else not cond_lora_activate, cond_activated=cond_lora_activate, latent_sblora_weight=condition_sblora_weight ): mlp_cond_hidden_states = self.act_mlp(self.proj_mlp(norm_condition_latents)) attn_output = attn_forward( self.attn, model_config=model_config, hidden_states=norm_hidden_states, image_rotary_emb=image_rotary_emb, last_attn_map=last_attn_map, latent_height=latent_height, store_attn_map=store_attn_map, timestep=timestep, latent_sblora_weight=latent_sblora_weight, condition_sblora_weight=condition_sblora_weight, **( { "condition_latents": norm_condition_latents, "cond_rotary_emb": cond_rotary_emb if using_cond else None, "text_cond_mask": text_cond_mask if using_cond else None, } if using_cond else {} ), ) if using_cond: attn_output, cond_attn_output = attn_output with enable_lora((self.proj_out,), activate_projout if train_partial_lora else model_config["sblock_lora"], latent_sblora_weight=latent_sblora_weight): hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2) # gate = (B, 1, 3072) or (B, S+, 3072) hidden_states = gate * self.proj_out(hidden_states) hidden_states = residual + hidden_states if using_cond: cond_lora_activate = model_config["use_condition_sblock_lora"] with enable_lora( (self.proj_out,), dit_activated=activate_projout if train_partial_lora else not cond_lora_activate, cond_activated=cond_lora_activate, latent_sblora_weight=condition_sblora_weight ): condition_latents = torch.cat([cond_attn_output, mlp_cond_hidden_states], dim=2) cond_gate = cond_gate.unsqueeze(1) condition_latents = cond_gate * self.proj_out(condition_latents) condition_latents = residual_cond + condition_latents if hidden_states.dtype == torch.float16: hidden_states = hidden_states.clip(-65504, 65504) return hidden_states if not using_cond else (hidden_states, condition_latents)