# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import cv2 import json import torch import random import base64 import numpy as np from PIL import Image, ImageDraw from glob import glob from torchvision import transforms as T import os import gc from webdataset.filters import default_collation_fn, pipelinefilter import yaml def get_rank_and_worldsize(): try: local_rank = int(os.environ.get("LOCAL_RANK")) global_rank = int(os.environ.get("RANK")) world_size = int(os.getenv('WORLD_SIZE', 1)) except: local_rank = 0 global_rank = 0 world_size = 1 return local_rank, global_rank, world_size def get_train_config(config_path=None): if config_path is None: config_path = os.environ.get("XFL_CONFIG") assert config_path is not None, "Please set the XFL_CONFIG environment variable" with open(config_path, "r") as f: config = yaml.safe_load(f) return config def calculate_aspect_ratios(resolution): ASPECT_RATIO = { '0.25': [128.0, 512.0], '0.26': [128.0, 496.0], '0.27': [128.0, 480.0], '0.28': [128.0, 464.0], '0.32': [144.0, 448.0], '0.33': [144.0, 432.0], '0.35': [144.0, 416.0], '0.4': [160.0, 400.0], '0.42': [160.0, 384.0], '0.48': [176.0, 368.0], '0.5': [176.0, 352.0], '0.52': [176.0, 336.0], '0.57': [192.0, 336.0], '0.6': [192.0, 320.0], '0.68': [208.0, 304.0], '0.72': [208.0, 288.0], '0.78': [224.0, 288.0], '0.82': [224.0, 272.0], '0.88': [240.0, 272.0], '0.94': [240.0, 256.0], '1.0': [256.0, 256.0], '1.07': [256.0, 240.0], '1.13': [272.0, 240.0], '1.21': [272.0, 224.0], '1.29': [288.0, 224.0], '1.38': [288.0, 208.0], '1.46': [304.0, 208.0], '1.67': [320.0, 192.0], '1.75': [336.0, 192.0], '2.0': [352.0, 176.0], '2.09': [368.0, 176.0], '2.4': [384.0, 160.0], '2.5': [400.0, 160.0], '2.89': [416.0, 144.0], '3.0': [432.0, 144.0], '3.11': [448.0, 144.0], '3.62': [464.0, 128.0], '3.75': [480.0, 128.0], '3.88': [496.0, 128.0], '4.0': [512.0, 128.0] } NEW_ASPECT_RATIO = {} for ratio in ASPECT_RATIO: height, width = ASPECT_RATIO[ratio] width = round(width / 256 * resolution) height = round(height / 256 * resolution) if width % 8 != 0: print(f"skip train resolution {width}, {height}") continue if height % 8 != 0: print(f"skip train resolution {width}, {height}") continue NEW_ASPECT_RATIO[ratio] = [height, width] return NEW_ASPECT_RATIO ASPECT_RATIO_256 = calculate_aspect_ratios(256) ASPECT_RATIO_384 = calculate_aspect_ratios(384) ASPECT_RATIO_512 = calculate_aspect_ratios(512) ASPECT_RATIO_768 = calculate_aspect_ratios(768) ASPECT_RATIO_1024 = calculate_aspect_ratios(1024) def get_closest_ratio(height: float, width: float, ratios: dict): aspect_ratio = height / width closest_ratio = min(ratios.keys(), key=lambda ratio: abs(float(ratio) - aspect_ratio)) return ratios[closest_ratio], closest_ratio def _aspect_ratio_batched( data, batchsize=20, aspect_ratios=ASPECT_RATIO_512, batch_cross=False, collation_fn=default_collation_fn, partial=True, ): """Create batches of the given size. :param data: iterator :param batchsize: target batch size :param tensors: automatically batch lists of ndarrays into ndarrays :param partial: return partial batches :returns: iterator """ assert collation_fn is not None buckets = { ratio: {"cross": [], "no_cross": []} for ratio in aspect_ratios.keys() } def check(buckets): for ratio in buckets: for bucket_name in buckets[ratio]: bucket = buckets[ratio][bucket_name] assert len(bucket) < batchsize for sample in data: check(buckets) height, width = sample['original_sizes'] (new_height, new_width), closest_ratio = get_closest_ratio(height, width, aspect_ratios) bucket_name = "cross" if sample["has_cross"] and batch_cross else "no_cross" bucket = buckets[closest_ratio][bucket_name] bucket.append(sample) if len(bucket) >= batchsize: try: batch = collation_fn(bucket) yield batch del batch except Exception as e: print(f"[aspect_ratio_batched] collation_fn batch failed due to error {e}") for sample in bucket: if "__key__" in sample: print("error sample key in batch:", sample["__key__"]) if "__url__" in sample: print("error sample url in batch:", sample["__url__"]) buckets[closest_ratio][bucket_name] = [] del bucket gc.collect() # yield the rest data and reset the buckets for ratio in buckets.keys(): for bucket_name in ["cross", "no_cross"]: bucket = buckets[ratio][bucket_name] if len(bucket) > 0: if len(bucket) == batchsize or partial: batch = collation_fn(bucket) yield batch del batch buckets[ratio][bucket_name] = [] del bucket aspect_ratio_batched = pipelinefilter(_aspect_ratio_batched) def apply_aspect_ratio_batched(dataset, batchsize, aspect_ratios, batch_cross, collation_fn, partial=True): return dataset.compose( aspect_ratio_batched( batchsize, aspect_ratios=aspect_ratios, batch_cross=batch_cross, collation_fn=collation_fn, partial=partial ) ) def get_aspect_ratios(enable_aspect_ratio, resolution): if enable_aspect_ratio: # print("[Dataset] Multi Aspect Ratio Training Enabled") if resolution == 256: aspect_ratios = ASPECT_RATIO_256 elif resolution == 384: aspect_ratios = ASPECT_RATIO_384 elif resolution == 512: aspect_ratios = ASPECT_RATIO_512 elif resolution == 768: aspect_ratios = ASPECT_RATIO_768 elif resolution == 1024: aspect_ratios = ASPECT_RATIO_1024 else: aspect_ratios = calculate_aspect_ratios(resolution) else: # print("[Dataset] Multi Aspect Ratio Training Disabled") aspect_ratios = { '1.0': [resolution, resolution] } return aspect_ratios def bbox_to_grid(bbox, image_size, output_size=(224, 224)): """ Convert bounding box to a grid of points. Args: bbox (list of float): [xmin, ymin, xmax, ymax] output_size (tuple of int): (height, width) of the output grid Returns: torch.Tensor: Grid of points with shape (output_height, output_width, 2) """ xmin, ymin, xmax, ymax = bbox # Create a meshgrid for the output grid h, w = output_size yy, xx = torch.meshgrid( torch.linspace(ymin, ymax, h), torch.linspace(xmin, xmax, w) ) grid = torch.stack((xx, yy), -1) # Normalize grid to range [-1, 1] H, W = image_size grid[..., 0] = grid[..., 0] / (W - 1) * 2 - 1 # Normalize x to [-1, 1] grid[..., 1] = grid[..., 1] / (H - 1) * 2 - 1 # Normalize y to [-1, 1] return grid def random_crop_instance(instance, min_crop_ratio): assert 0 < min_crop_ratio <= 1 crop_width_ratio = random.uniform(min_crop_ratio, 1) crop_height_ratio = random.uniform(min_crop_ratio, 1) orig_width, orig_height = instance.size crop_width = int(orig_width * crop_width_ratio) crop_height = int(orig_height * crop_height_ratio) crop_left = random.randint(0, orig_width - crop_width) crop_top = random.randint(0, orig_height - crop_height) crop_box = (crop_left, crop_top, crop_left + crop_width, crop_top + crop_height) # (left, upper, right, lower) return instance.crop(crop_box), crop_box pil2tensor = T.ToTensor() tensor2pil = T.ToPILImage() cv2pil = lambda x: Image.fromarray(cv2.cvtColor(x, cv2.COLOR_BGR2RGB)) pil2cv2 = lambda x: cv2.cvtColor(np.array(x), cv2.COLOR_RGB2BGR) def compute_psnr(x, y): y = y.resize(x.size) x = pil2tensor(x) * 255. y = pil2tensor(y) * 255. mse = torch.mean((x - y) ** 2) return 20 * torch.log10(255.0 / torch.sqrt(mse)).item() def replace_first_occurrence(sentence, word_or_phrase, replace_with): # Escape special characters in word_or_phrase for exact matching escaped_word_or_phrase = re.escape(word_or_phrase) pattern = r'\b' + escaped_word_or_phrase + r'\b' # Finding the first match match = next(re.finditer(pattern, sentence), None) if match: # Perform replacement result = re.sub(pattern, replace_with, sentence, count=1) replaced = True index = match.start() else: # No match found result = sentence replaced = False index = -1 return result, replaced, index def decode_base64_to_image(base64_str): # Decode the base64 string to bytes img_bytes = base64.b64decode(base64_str) # Create a BytesIO buffer from the bytes img_buffer = io.BytesIO(img_bytes) # Open the image using Pillow image = Image.open(img_buffer) return image def jpeg_compression(pil_image, quality): buffer = io.BytesIO() pil_image.save(buffer, format="JPEG", quality=quality) return Image.open(io.BytesIO(buffer.getvalue())) def pad_to_square(pil_image): new_size = max(pil_image.width, pil_image.height) square_image = Image.new("RGB", (new_size, new_size), "white") left = (new_size - pil_image.width) // 2 top = (new_size - pil_image.height) // 2 square_image.paste(pil_image, (left, top)) return square_image def pad_to_target(pil_image, target_size): original_width, original_height = pil_image.size target_width, target_height = target_size original_aspect_ratio = original_width / original_height target_aspect_ratio = target_width / target_height # Pad the image to the target aspect ratio if original_aspect_ratio > target_aspect_ratio: new_width = original_width new_height = int(new_width / target_aspect_ratio) else: new_height = original_height new_width = int(new_height * target_aspect_ratio) pad_image = Image.new("RGB", (new_width, new_height), "white") left = (new_width - original_width) // 2 top = (new_height - original_height) // 2 pad_image.paste(pil_image, (left, top)) # Resize the image to the target size resized_image = pad_image.resize(target_size) return resized_image def image_grid(imgs, rows, cols): # assert len(imgs) == rows * cols w, h = imgs[0].size if imgs[0].mode == 'L': grid = Image.new('L', size=(cols * w, rows * h)) else: grid = Image.new('RGB', size=(cols * w, rows * h)) for i, img in enumerate(imgs): grid.paste(img, box=(i % cols * w, i // cols * h)) return grid def split_grid(image): width = image.width // 2 height = image.height // 2 crop_tuples_list = [ (0, 0, width, height), (width, 0, width*2, height), (0, height, width, height*2), (width, height, width*2, height*2), ] def crop_image(input_image, crop_tuple=None): if crop_tuple is None: return input_image return input_image.crop((crop_tuple[0], crop_tuple[1], crop_tuple[2], crop_tuple[3])) return [crop_image(image, crop_tuple) for crop_tuple in crop_tuples_list] def add_border(img, border_color, border_thickness): """ Add a colored border to an image without changing its size. Parameters: border_color (tuple): Border color in RGB (e.g., (255, 0, 0) for red). border_thickness (int): Thickness of the border in pixels. """ width, height = img.size img = img.copy() draw = ImageDraw.Draw(img) draw.rectangle((0, 0, width, border_thickness), fill=border_color) draw.rectangle((0, height - border_thickness, width, height), fill=border_color) draw.rectangle((0, 0, border_thickness, height), fill=border_color) draw.rectangle((width - border_thickness, 0, width, height), fill=border_color) return img def merge_bboxes(bboxes): if not bboxes: return None # Handle empty input # Extract all coordinates x_mins = [b[0] for b in bboxes] y_mins = [b[1] for b in bboxes] x_maxs = [b[2] for b in bboxes] y_maxs = [b[3] for b in bboxes] # Compute the merged box merged_box = ( min(x_mins), # x_min min(y_mins), # y_min max(x_maxs), # x_max max(y_maxs) # y_max ) return merged_box def flip_bbox_left_right(bbox, image_width): """ Flips the bounding box horizontally on an image. Parameters: bbox (list of float): [x_min, y_min, x_max, y_max] image_width (int): The width of the image Returns: list of float: New bounding box after horizontal flip [x_min', y_min', x_max', y_max'] """ x_min, y_min, x_max, y_max = bbox new_x_min = image_width - x_max new_x_max = image_width - x_min new_bbox = [new_x_min, y_min, new_x_max, y_max] return new_bbox def json_load(path, encoding='ascii'): with open(path, 'r', encoding=encoding) as file: return json.load(file) def json_dump(obj, path, encoding='ascii', indent=4, create_dir=True, verbose=True, **kwargs): if create_dir and os.path.dirname(path) != '': os.makedirs(os.path.dirname(path), exist_ok=True) with open(path, 'w', encoding=encoding) as file: json.dump(obj, file, indent=4, ensure_ascii=False, **kwargs) if verbose: print(type(obj), 'saved to', path)