# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates # Copyright (c) Facebook, Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from src.flux.pipeline_tools import tokenize_t5_prompt def unpad_input_ids(input_ids, attention_mask): return [input_ids[i][attention_mask[i].bool()][:-1] for i in range(input_ids.shape[0])] def get_word_index(pipe, prompt, input_ids, word, word_count=1, max_length=512, verbose=True, reverse=False): word_inputs = tokenize_t5_prompt(pipe, word, max_length) word_ids = unpad_input_ids(word_inputs.input_ids, word_inputs.attention_mask)[0] if word_ids[0] == 3: word_ids = word_ids[1:] # remove prefix space if verbose: print(f"Trying to find {word} {word_ids.tolist()} in {input_ids.tolist()} where") print([(i, pipe.tokenizer_2.decode(input_ids[i])) for i in range(input_ids.shape[0])]) count = 0 if reverse: for i in range(input_ids.shape[0] - word_ids.shape[0],-1,-1): if torch.equal(input_ids[i:i+word_ids.shape[0]], word_ids): count += 1 if count == word_count: if verbose: reconstructed_word = pipe.tokenizer_2.decode(input_ids[i:i+word_ids.shape[0]]) assert reconstructed_word == word print(f"[Reverse] Found index {i} to {i+word_ids.shape[0]} for '{word}' in prompt '{prompt}'") print("Reconstructed word", reconstructed_word) return i, i + word_ids.shape[0] else: for i in range(input_ids.shape[0] - word_ids.shape[0] + 1): if torch.equal(input_ids[i:i+word_ids.shape[0]], word_ids): count += 1 if count == word_count: if verbose: reconstructed_word = pipe.tokenizer_2.decode(input_ids[i:i+word_ids.shape[0]]) assert reconstructed_word == word print(f"Found index {i} to {i+word_ids.shape[0]} for '{word}' in prompt '{prompt}'") print("Reconstructed word", reconstructed_word) return i, i + word_ids.shape[0] print(f"[Error] Could not find '{word}' in prompt '{prompt}' with word_count {word_count}")