Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,500 Bytes
e02fa45 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
import traceback
from tqdm import tqdm
import os
import torch
import numpy as np
from PIL import Image
from omegaconf import OmegaConf
from time import time
from pixel3dmm.utils.uv import uv_pred_to_mesh
from pixel3dmm.lightning.p3dmm_system import system as p3dmm_system
#from pixel3dmm.lightning.system_flame_params_legacy import system as system_flame_params_legacy
from pixel3dmm import env_paths
def pad_to_3_channels(img):
if img.shape[-1] == 3:
return img
elif img.shape[-1] == 1:
return np.concatenate([img, np.zeros_like(img[..., :1]), np.zeros_like(img[..., :1])], axis=-1)
elif img.shape[-1] == 2:
return np.concatenate([img, np.zeros_like(img[..., :1])], axis=-1)
else:
raise ValueError('too many dimensions in prediction type!')
def gaussian_fn(M, std):
n = torch.arange(0, M) - (M - 1.0) / 2.0
sig2 = 2 * std * std
w = torch.exp(-n ** 2 / sig2)
return w
def gkern(kernlen=256, std=128):
"""Returns a 2D Gaussian kernel array."""
gkern1d_x = gaussian_fn(kernlen, std=std * 5)
gkern1d_y = gaussian_fn(kernlen, std=std)
gkern2d = torch.outer(gkern1d_y, gkern1d_x)
return gkern2d
valid_verts = np.load(f'{env_paths.VALID_VERTICES_WIDE_REGION}')
def normals_n_uvs(cfg, model):
if cfg.model.prediction_type == 'flame_params':
cfg.data.mirror_aug = False
# data loader
if cfg.model.feature_map_type == 'DINO':
feature_map_size = 32
elif cfg.model.feature_map_type == 'sapiens':
feature_map_size = 64
batch_size = 1 # cfg.inference_batch_size
prediction_types = cfg.model.prediction_type.split(',')
conv = torch.nn.Conv2d(in_channels=1, out_channels=1, kernel_size=11, bias=False, padding='same')
g_weights = gkern(11, 2)
g_weights /= torch.sum(g_weights)
conv.weight = torch.nn.Parameter(g_weights.unsqueeze(0).unsqueeze(0))
OUT_NAMES = str(cfg.video_name).split(',')
print(f"""
<<<<<<<< STARTING PIXEL3DMM INFERENCE for {cfg.video_name} in {prediction_types} MODE >>>>>>>>
""")
for OUT_NAME in OUT_NAMES:
folder = f'{env_paths.PREPROCESSED_DATA}/{OUT_NAME}/'
IMAGE_FOLDER = f'{folder}/cropped'
SEGMENTATION_FOLDER = f'{folder}/seg_og/'
out_folders = {}
out_folders_wGT = {}
out_folders_viz = {}
for prediction_type in prediction_types:
out_folders[prediction_type] = f'{env_paths.PREPROCESSED_DATA}/{OUT_NAME}/p3dmm/{prediction_type}/'
out_folders_wGT[prediction_type] = f'{env_paths.PREPROCESSED_DATA}/{OUT_NAME}/p3dmm_wGT/{prediction_type}/'
os.makedirs(out_folders[prediction_type], exist_ok=True)
os.makedirs(out_folders_wGT[prediction_type], exist_ok=True)
out_folders_viz[prediction_type] = f'{env_paths.PREPROCESSED_DATA}/{OUT_NAME}/p3dmm_extraViz/{prediction_type}/'
os.makedirs(out_folders_viz[prediction_type], exist_ok=True)
image_names = os.listdir(f'{IMAGE_FOLDER}')
image_names.sort()
if os.path.exists(out_folders[prediction_type]):
if len(os.listdir(out_folders[prediction_type])) == len(image_names):
return
for i in tqdm(range(len(image_names))):
try:
img = np.array(Image.open(f'{IMAGE_FOLDER}/{image_names[i]}').resize((512, 512))) / 255 # need 512,512 images as input; normalize to [0, 1] range
img = torch.from_numpy(img)[None, None].float().cuda() # 1,1,512,512,3
img_seg = np.array(Image.open(f'{SEGMENTATION_FOLDER}/{image_names[i][:-4]}.png').resize((512, 512), Image.NEAREST))
if len(img_seg.shape) == 3:
img_seg = img_seg[..., 0]
#img_seg = np.array(Image.open(f'{SEGEMNTATION_FOLDER}/{int(image_names[i][:-4])*3:05d}.png').resize((512, 512), Image.NEAREST))
mask = ((img_seg == 2) | ((img_seg > 3) & (img_seg < 14)) ) & ~(img_seg==11)
mask = torch.from_numpy(mask).long().cuda()[None, None] # 1, 1, 512, 512
#mask = torch.ones_like(img[..., 0]).cuda().bool()
batch = {
'tar_msk': mask,
'tar_rgb': img,
}
batch_mirrored = {
'tar_rgb': torch.flip(batch['tar_rgb'], dims=[3]).cuda(),
'tar_msk': torch.flip(batch['tar_msk'], dims=[3]).cuda(),
}
with torch.no_grad():
output, conf = model.net(batch)
output_mirrored, conf = model.net(batch_mirrored)
if 'uv_map' in output:
fliped_uv_pred = torch.flip(output_mirrored['uv_map'], dims=[4])
fliped_uv_pred[:, :, 0, :, :] *= -1
fliped_uv_pred[:, :, 0, :, :] += 2*0.0075
output['uv_map'] = (output['uv_map'] + fliped_uv_pred)/2
if 'normals' in output:
fliped_uv_pred = torch.flip(output_mirrored['normals'], dims=[4])
fliped_uv_pred[:, :, 0, :, :] *= -1
output['normals'] = (output['normals'] + fliped_uv_pred)/2
if 'disps' in output:
fliped_uv_pred = torch.flip(output_mirrored['disps'], dims=[4])
fliped_uv_pred[:, :, 0, :, :] *= -1
output['disps'] = (output['disps'] + fliped_uv_pred)/2
for prediction_type in prediction_types:
for i_batch in range(batch_size):
i_view = 0
gt_rgb = batch['tar_rgb']
# normalize to [0,1] range
if prediction_type == 'uv_map':
tmp_output = torch.clamp((output[prediction_type][i_batch, i_view] + 1) / 2, 0, 1)
elif prediction_type == 'disps':
tmp_output = torch.clamp((output[prediction_type][i_batch, i_view] + 50) / 100, 0, 1)
elif prediction_type in ['normals', 'normals_can']:
tmp_output = output[prediction_type][i_batch, i_view]
tmp_output = tmp_output / torch.norm(tmp_output, dim=0).unsqueeze(0)
tmp_output = torch.clamp((tmp_output + 1) / 2, 0, 1)
# undo "weird" convention of normals that I used for preprocessing
tmp_output = torch.stack(
[tmp_output[0, ...], 1 - tmp_output[2, ...], 1 - tmp_output[1, ...]],
dim=0)
content = [
gt_rgb[i_batch, i_view].detach().cpu().numpy(),
pad_to_3_channels(tmp_output.permute(1, 2, 0).detach().cpu().float().numpy()),
]
catted = (np.concatenate(content, axis=1) * 255).astype(np.uint8)
Image.fromarray(catted).save(f'{out_folders_wGT[prediction_type]}/{image_names[i]}')
Image.fromarray(
pad_to_3_channels(
tmp_output.permute(1, 2, 0).detach().cpu().float().numpy() * 255).astype(
np.uint8)).save(
f'{out_folders[prediction_type]}/{image_names[i][:-4]}.png')
# this visulization is quite slow, therefore disable it per default
if prediction_type == 'uv_map' and cfg.viz_uv_mesh:
to_show_non_mirr = uv_pred_to_mesh(
output[prediction_type][i_batch:i_batch + 1, ...],
batch['tar_msk'][i_batch:i_batch + 1, ...],
batch['tar_rgb'][i_batch:i_batch + 1, ...],
right_ear = [537, 1334, 857, 554, 941],
left_ear = [541, 476, 237, 502, 286],
)
Image.fromarray(to_show_non_mirr).save(f'{out_folders_viz[prediction_type]}/{image_names[i]}')
except Exception:
traceback.print_exc()
print(f"""
<<<<<<<< FINISHED PIXEL3DMM INFERENCE for {cfg.video_name} in {prediction_types} MODE >>>>>>>>
""")
|