pixel3dmm / app_photo.py
alexnasa's picture
Update app_photo.py
1814d0e verified
raw
history blame
8.5 kB
import spaces
import os
import subprocess
import tempfile
import uuid
import glob
import shutil
import time
import gradio as gr
import sys
from PIL import Image
def install_cuda_toolkit():
CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.1.0/local_installers/cuda_12.1.0_530.30.02_linux.run"
CUDA_TOOLKIT_FILE = "/tmp/%s" % os.path.basename(CUDA_TOOLKIT_URL)
subprocess.call(["wget", "-q", CUDA_TOOLKIT_URL, "-O", CUDA_TOOLKIT_FILE])
subprocess.call(["chmod", "+x", CUDA_TOOLKIT_FILE])
subprocess.call([CUDA_TOOLKIT_FILE, "--silent", "--toolkit"])
os.environ["CUDA_HOME"] = "/usr/local/cuda"
os.environ["PATH"] = "%s/bin:%s" % (os.environ["CUDA_HOME"], os.environ["PATH"])
os.environ["LD_LIBRARY_PATH"] = "%s/lib:%s" % (
os.environ["CUDA_HOME"],
"" if "LD_LIBRARY_PATH" not in os.environ else os.environ["LD_LIBRARY_PATH"],
)
# Fix: arch_list[-1] += '+PTX'; IndexError: list index out of range
os.environ["TORCH_CUDA_ARCH_LIST"] = "9.0"
print("==> finished installation")
install_cuda_toolkit()
import os
import torch
import numpy as np
import trimesh
from pytorch3d.io import load_obj
from pixel3dmm.tracking.renderer_nvdiffrast import NVDRenderer
from pixel3dmm.tracking.flame.FLAME import FLAME
from pixel3dmm.tracking.tracker import Tracker
from pixel3dmm import env_paths
from omegaconf import OmegaConf
DEVICE = "cuda"
base_conf = OmegaConf.load(f'{env_paths.CODE_BASE}/configs/tracking.yaml')
_mesh_file = env_paths.head_template
flame_model = FLAME(base_conf).to(DEVICE)
_obj_faces = load_obj(_mesh_file)[1]
diff_renderer = NVDRenderer(
image_size=base_conf.size,
obj_filename=_mesh_file,
no_sh=False,
white_bg=True
).to(DEVICE)
# Utility to select first image from a folder
def first_image_from_dir(directory):
patterns = ["*.jpg", "*.png", "*.jpeg"]
files = []
for p in patterns:
files.extend(glob.glob(os.path.join(directory, p)))
if not files:
return None
return sorted(files)[0]
# Function to reset the UI and state
def reset_all():
return (
None, # crop_img
None, # normals_img
None, # uv_img
None, # track_img
"Awaiting new image upload...", # status
{}, # state
gr.update(interactive=True), # preprocess_btn
gr.update(interactive=False), # normals_btn
gr.update(interactive=False), # uv_map_btn
gr.update(interactive=False) # track_btn
)
# Step 1: Preprocess the input image (Save and Crop)
# @spaces.GPU()
def preprocess_image(image_array, state):
if image_array is None:
return "❌ Please upload an image first.", None, state, gr.update(interactive=True), gr.update(interactive=False)
session_id = str(uuid.uuid4())
base_dir = os.path.join(os.environ["PIXEL3DMM_PREPROCESSED_DATA"], session_id)
os.makedirs(base_dir, exist_ok=True)
state.update({"session_id": session_id, "base_dir": base_dir})
img = Image.fromarray(image_array)
saved_image_path = os.path.join(base_dir, f"{session_id}.png")
img.save(saved_image_path)
state["image_path"] = saved_image_path
try:
p = subprocess.run([
"python", "scripts/run_preprocessing.py", "--video_or_images_path", saved_image_path
], check=True, capture_output=True, text=True)
except subprocess.CalledProcessError as e:
err = f"❌ Preprocess failed (exit {e.returncode}).\n\n{e.stdout}\n{e.stderr}"
shutil.rmtree(base_dir)
return err, None, {}, gr.update(interactive=True), gr.update(interactive=False)
crop_dir = os.path.join(base_dir, "cropped")
image = first_image_from_dir(crop_dir)
return "βœ… Step 1 complete. Ready for Normals.", image, state, gr.update(interactive=False), gr.update(interactive=True)
# Step 2: Normals inference β†’ normals image
@spaces.GPU()
def step2_normals(state):
session_id = state.get("session_id")
if not session_id:
return "❌ State lost. Please start from Step 1.", None, state, gr.update(interactive=False), gr.update(interactive=False)
try:
p = subprocess.run([
"python", "scripts/network_inference.py", "model.prediction_type=normals", f"video_name={session_id}"
], check=True, capture_output=True, text=True)
except subprocess.CalledProcessError as e:
err = f"❌ Normal map failed (exit {e.returncode}).\n\n{e.stdout}\n{e.stderr}"
return err, None, state, gr.update(interactive=True), gr.update(interactive=False)
normals_dir = os.path.join(state["base_dir"], "p3dmm", "normals")
image = first_image_from_dir(normals_dir)
return "βœ… Step 2 complete. Ready for UV Map.", image, state, gr.update(interactive=False), gr.update(interactive=True)
# Step 3: UV map inference β†’ uv map image
@spaces.GPU()
def step3_uv_map(state):
session_id = state.get("session_id")
if not session_id:
return "❌ State lost. Please start from Step 1.", None, state, gr.update(interactive=False), gr.update(interactive=False)
try:
p = subprocess.run([
"python", "scripts/network_inference.py", "model.prediction_type=uv_map", f"video_name={session_id}"
], check=True, capture_output=True, text=True)
except subprocess.CalledProcessError as e:
err = f"❌ UV map failed (exit {e.returncode}).\n\n{e.stdout}\n{e.stderr}"
return err, None, state, gr.update(interactive=True), gr.update(interactive=False)
uv_dir = os.path.join(state["base_dir"], "p3dmm", "uv_map")
image = first_image_from_dir(uv_dir)
return "βœ… Step 3 complete. Ready for Tracking.", image, state, gr.update(interactive=False), gr.update(interactive=True)
# Step 4: Tracking β†’ final tracking image
@spaces.GPU()
def step4_track(state):
session_id = state.get("session_id")
base_conf.video_name = f'{session_id}'
tracker = Tracker(base_conf, flame_model, diff_renderer)
tracker.run()
tracking_dir = os.path.join(os.environ["PIXEL3DMM_TRACKING_OUTPUT"], session_id, "frames")
image = first_image_from_dir(tracking_dir)
return "βœ… Pipeline complete!", image, state, gr.update(interactive=False)
# Build Gradio UI
demo = gr.Blocks()
with demo:
gr.Markdown("## Image Processing Pipeline")
gr.Markdown("Upload an image, then click the buttons in order. Uploading a new image will reset the process.")
with gr.Row():
with gr.Column():
image_in = gr.Image(label="Upload Image", type="numpy", height=512)
status = gr.Textbox(label="Status", lines=2, interactive=False, value="Upload an image to start.")
state = gr.State({})
with gr.Column():
with gr.Row():
crop_img = gr.Image(label="Preprocessed", height=256)
normals_img = gr.Image(label="Normals", height=256)
with gr.Row():
uv_img = gr.Image(label="UV Map", height=256)
track_img = gr.Image(label="Tracking", height=256)
with gr.Row():
preprocess_btn = gr.Button("Step 1: Preprocess", interactive=True)
normals_btn = gr.Button("Step 2: Normals", interactive=False)
uv_map_btn = gr.Button("Step 3: UV Map", interactive=False)
track_btn = gr.Button("Step 4: Track", interactive=False)
# Define component list for reset
outputs_for_reset = [crop_img, normals_img, uv_img, track_img, status, state, preprocess_btn, normals_btn, uv_map_btn, track_btn]
# Pipeline execution logic
preprocess_btn.click(
fn=preprocess_image,
inputs=[image_in, state],
outputs=[status, crop_img, state, preprocess_btn, normals_btn]
)
normals_btn.click(
fn=step2_normals,
inputs=[state],
outputs=[status, normals_img, state, normals_btn, uv_map_btn]
)
uv_map_btn.click(
fn=step3_uv_map,
inputs=[state],
outputs=[status, uv_img, state, uv_map_btn, track_btn]
)
track_btn.click(
fn=step4_track,
inputs=[state],
outputs=[status, track_img, state, track_btn]
)
# Event to reset everything when a new image is uploaded
image_in.upload(fn=reset_all, inputs=None, outputs=outputs_for_reset)
# ------------------------------------------------------------------
# START THE GRADIO SERVER
# ------------------------------------------------------------------
demo.queue()
demo.launch(share=True, ssr_mode=False)