Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import os | |
import subprocess | |
import tempfile | |
import uuid | |
import glob | |
import shutil | |
import time | |
import gradio as gr | |
import sys | |
from PIL import Image | |
import importlib, site, sys | |
# Re-discover all .pth/.egg-link files | |
for sitedir in site.getsitepackages(): | |
site.addsitedir(sitedir) | |
# Clear caches so importlib will pick up new modules | |
importlib.invalidate_caches() | |
# Set environment variables | |
os.environ["PIXEL3DMM_CODE_BASE"] = f"{os.getcwd()}" | |
os.environ["PIXEL3DMM_PREPROCESSED_DATA"] = f"{os.getcwd()}/proprocess_results" | |
os.environ["PIXEL3DMM_TRACKING_OUTPUT"] = f"{os.getcwd()}/tracking_results" | |
def sh(cmd): subprocess.check_call(cmd, shell=True) | |
sh("pip install -e .") | |
# tell Python to re-scan site-packages now that the egg-link exists | |
import importlib, site; site.addsitedir(site.getsitepackages()[0]); importlib.invalidate_caches() | |
from pixel3dmm import env_paths | |
sh("cd src/pixel3dmm/preprocessing/facer && pip install -e . && cd ../../../..") | |
sh("cd src/pixel3dmm/preprocessing/PIPNet/FaceBoxesV2/utils && sh make.sh && cd ../../../../../..") | |
def install_cuda_toolkit(): | |
CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.1.0/local_installers/cuda_12.1.0_530.30.02_linux.run" | |
CUDA_TOOLKIT_FILE = "/tmp/%s" % os.path.basename(CUDA_TOOLKIT_URL) | |
subprocess.call(["wget", "-q", CUDA_TOOLKIT_URL, "-O", CUDA_TOOLKIT_FILE]) | |
subprocess.call(["chmod", "+x", CUDA_TOOLKIT_FILE]) | |
subprocess.call([CUDA_TOOLKIT_FILE, "--silent", "--toolkit"]) | |
os.environ["CUDA_HOME"] = "/usr/local/cuda" | |
os.environ["PATH"] = "%s/bin:%s" % (os.environ["CUDA_HOME"], os.environ["PATH"]) | |
os.environ["LD_LIBRARY_PATH"] = "%s/lib:%s" % ( | |
os.environ["CUDA_HOME"], | |
"" if "LD_LIBRARY_PATH" not in os.environ else os.environ["LD_LIBRARY_PATH"], | |
) | |
# Fix: arch_list[-1] += '+PTX'; IndexError: list index out of range | |
os.environ["TORCH_CUDA_ARCH_LIST"] = "9.0" | |
print("==> finished installation") | |
install_cuda_toolkit() | |
from omegaconf import OmegaConf | |
DEVICE = "cuda" | |
# 1. Prepare config at import time (no CUDA calls) | |
base_conf = OmegaConf.load("configs/tracking.yaml") | |
# 2. Empty cache for our heavy objects | |
_model_cache = {} | |
# Utility to select first image from a folder | |
def first_image_from_dir(directory): | |
patterns = ["*.jpg", "*.png", "*.jpeg"] | |
files = [] | |
for p in patterns: | |
files.extend(glob.glob(os.path.join(directory, p))) | |
if not files: | |
return None | |
return sorted(files)[0] | |
# Function to reset the UI and state | |
def reset_all(): | |
return ( | |
None, # crop_img | |
None, # normals_img | |
None, # uv_img | |
None, # track_img | |
"Awaiting new image upload...", # status | |
{}, # state | |
gr.update(interactive=True), # preprocess_btn | |
gr.update(interactive=False), # normals_btn | |
gr.update(interactive=False), # uv_map_btn | |
gr.update(interactive=False) # track_btn | |
) | |
# Step 1: Preprocess the input image (Save and Crop) | |
def preprocess_image(image_array, state): | |
if image_array is None: | |
return "β Please upload an image first.", None, state, gr.update(interactive=True), gr.update(interactive=False) | |
session_id = str(uuid.uuid4()) | |
base_dir = os.path.join(os.environ["PIXEL3DMM_PREPROCESSED_DATA"], session_id) | |
os.makedirs(base_dir, exist_ok=True) | |
state.update({"session_id": session_id, "base_dir": base_dir}) | |
img = Image.fromarray(image_array) | |
saved_image_path = os.path.join(base_dir, f"{session_id}.png") | |
img.save(saved_image_path) | |
state["image_path"] = saved_image_path | |
try: | |
p = subprocess.run([ | |
"python", "scripts/run_preprocessing.py", "--video_or_images_path", saved_image_path | |
], check=True, capture_output=True, text=True) | |
except subprocess.CalledProcessError as e: | |
err = f"β Preprocess failed (exit {e.returncode}).\n\n{e.stdout}\n{e.stderr}" | |
shutil.rmtree(base_dir) | |
return err, None, {}, gr.update(interactive=True), gr.update(interactive=False) | |
crop_dir = os.path.join(base_dir, "cropped") | |
image = first_image_from_dir(crop_dir) | |
return "β Step 1 complete. Ready for Normals.", image, state, gr.update(interactive=False), gr.update(interactive=True) | |
# Step 2: Normals inference β normals image | |
def step2_normals(state): | |
session_id = state.get("session_id") | |
if not session_id: | |
return "β State lost. Please start from Step 1.", None, state, gr.update(interactive=False), gr.update(interactive=False) | |
try: | |
p = subprocess.run([ | |
"python", "scripts/network_inference.py", "model.prediction_type=normals", f"video_name={session_id}" | |
], check=True, capture_output=True, text=True) | |
except subprocess.CalledProcessError as e: | |
err = f"β Normal map failed (exit {e.returncode}).\n\n{e.stdout}\n{e.stderr}" | |
return err, None, state, gr.update(interactive=True), gr.update(interactive=False) | |
normals_dir = os.path.join(state["base_dir"], "p3dmm", "normals") | |
image = first_image_from_dir(normals_dir) | |
return "β Step 2 complete. Ready for UV Map.", image, state, gr.update(interactive=False), gr.update(interactive=True) | |
# Step 3: UV map inference β uv map image | |
def step3_uv_map(state): | |
session_id = state.get("session_id") | |
if not session_id: | |
return "β State lost. Please start from Step 1.", None, state, gr.update(interactive=False), gr.update(interactive=False) | |
try: | |
p = subprocess.run([ | |
"python", "scripts/network_inference.py", "model.prediction_type=uv_map", f"video_name={session_id}" | |
], check=True, capture_output=True, text=True) | |
except subprocess.CalledProcessError as e: | |
err = f"β UV map failed (exit {e.returncode}).\n\n{e.stdout}\n{e.stderr}" | |
return err, None, state, gr.update(interactive=True), gr.update(interactive=False) | |
uv_dir = os.path.join(state["base_dir"], "p3dmm", "uv_map") | |
image = first_image_from_dir(uv_dir) | |
return "β Step 3 complete. Ready for Tracking.", image, state, gr.update(interactive=False), gr.update(interactive=True) | |
# Step 4: Tracking β final tracking image | |
def step4_track(state): | |
# Lazy init + caching of FLAME model on GPU | |
if "flame_model" not in _model_cache: | |
import os | |
import torch | |
import numpy as np | |
import trimesh | |
from pytorch3d.io import load_obj | |
from pixel3dmm.tracking.flame.FLAME import FLAME | |
from pixel3dmm.tracking.tracker import Tracker | |
flame = FLAME(base_conf) # CPU instantiation | |
flame = flame.to(DEVICE) # CUDA init happens here | |
_model_cache["flame_model"] = flame | |
flame_model = _model_cache["flame_model"] | |
session_id = state.get("session_id") | |
base_conf.video_name = f'{session_id}' | |
tracker = Tracker(base_conf, flame_model) | |
tracker.run() | |
tracking_dir = os.path.join(os.environ["PIXEL3DMM_TRACKING_OUTPUT"], session_id, "frames") | |
image = first_image_from_dir(tracking_dir) | |
return "β Pipeline complete!", image, state, gr.update(interactive=False) | |
# Build Gradio UI | |
demo = gr.Blocks() | |
with demo: | |
gr.Markdown("## Image Processing Pipeline") | |
gr.Markdown("Upload an image, then click the buttons in order. Uploading a new image will reset the process.") | |
with gr.Row(): | |
with gr.Column(): | |
image_in = gr.Image(label="Upload Image", type="numpy", height=512) | |
status = gr.Textbox(label="Status", lines=2, interactive=False, value="Upload an image to start.") | |
state = gr.State({}) | |
with gr.Column(): | |
with gr.Row(): | |
crop_img = gr.Image(label="Preprocessed", height=256) | |
normals_img = gr.Image(label="Normals", height=256) | |
with gr.Row(): | |
uv_img = gr.Image(label="UV Map", height=256) | |
track_img = gr.Image(label="Tracking", height=256) | |
with gr.Row(): | |
preprocess_btn = gr.Button("Step 1: Preprocess", interactive=True) | |
normals_btn = gr.Button("Step 2: Normals", interactive=False) | |
uv_map_btn = gr.Button("Step 3: UV Map", interactive=False) | |
track_btn = gr.Button("Step 4: Track", interactive=False) | |
# Define component list for reset | |
outputs_for_reset = [crop_img, normals_img, uv_img, track_img, status, state, preprocess_btn, normals_btn, uv_map_btn, track_btn] | |
# Pipeline execution logic | |
preprocess_btn.click( | |
fn=preprocess_image, | |
inputs=[image_in, state], | |
outputs=[status, crop_img, state, preprocess_btn, normals_btn] | |
) | |
normals_btn.click( | |
fn=step2_normals, | |
inputs=[state], | |
outputs=[status, normals_img, state, normals_btn, uv_map_btn] | |
) | |
uv_map_btn.click( | |
fn=step3_uv_map, | |
inputs=[state], | |
outputs=[status, uv_img, state, uv_map_btn, track_btn] | |
) | |
track_btn.click( | |
fn=step4_track, | |
inputs=[state], | |
outputs=[status, track_img, state, track_btn] | |
) | |
# Event to reset everything when a new image is uploaded | |
image_in.upload(fn=reset_all, inputs=None, outputs=outputs_for_reset) | |
# ------------------------------------------------------------------ | |
# START THE GRADIO SERVER | |
# ------------------------------------------------------------------ | |
demo.queue() | |
demo.launch(share=True, ssr_mode=False) |