pixel3dmm / scripts /network_inference.py
alexnasa's picture
Upload 66 files
cf92dec verified
import traceback
from tqdm import tqdm
import os
import torch
import numpy as np
from PIL import Image
from omegaconf import OmegaConf
from time import time
from pixel3dmm.utils.uv import uv_pred_to_mesh
from pixel3dmm.lightning.p3dmm_system import system as p3dmm_system
#from pixel3dmm.lightning.system_flame_params_legacy import system as system_flame_params_legacy
from pixel3dmm import env_paths
def pad_to_3_channels(img):
if img.shape[-1] == 3:
return img
elif img.shape[-1] == 1:
return np.concatenate([img, np.zeros_like(img[..., :1]), np.zeros_like(img[..., :1])], axis=-1)
elif img.shape[-1] == 2:
return np.concatenate([img, np.zeros_like(img[..., :1])], axis=-1)
else:
raise ValueError('too many dimensions in prediction type!')
def gaussian_fn(M, std):
n = torch.arange(0, M) - (M - 1.0) / 2.0
sig2 = 2 * std * std
w = torch.exp(-n ** 2 / sig2)
return w
def gkern(kernlen=256, std=128):
"""Returns a 2D Gaussian kernel array."""
gkern1d_x = gaussian_fn(kernlen, std=std * 5)
gkern1d_y = gaussian_fn(kernlen, std=std)
gkern2d = torch.outer(gkern1d_y, gkern1d_x)
return gkern2d
valid_verts = np.load(f'{env_paths.VALID_VERTICES_WIDE_REGION}')
def main(cfg):
if cfg.model.prediction_type == 'flame_params':
cfg.data.mirror_aug = False
# data loader
if cfg.model.feature_map_type == 'DINO':
feature_map_size = 32
elif cfg.model.feature_map_type == 'sapiens':
feature_map_size = 64
batch_size = 1 #cfg.inference_batch_size
checkpoints = {
'uv_map': f"{env_paths.CKPT_UV_PRED}",
'normals': f"{env_paths.CKPT_N_PRED}",
}
model_checkpoint = checkpoints[cfg.model.prediction_type]
model = None
prediction_types = cfg.model.prediction_type.split(',')
conv = torch.nn.Conv2d(in_channels=1, out_channels=1, kernel_size=11, bias=False, padding='same')
g_weights = gkern(11, 2)
g_weights /= torch.sum(g_weights)
conv.weight = torch.nn.Parameter(g_weights.unsqueeze(0).unsqueeze(0))
OUT_NAMES = str(cfg.video_name).split(',')
print(f'''
<<<<<<<< STARTING PIXEL3DMM INFERENCE for {cfg.video_name} in {prediction_types} MODE >>>>>>>>
''')
for OUT_NAME in OUT_NAMES:
folder = f'{env_paths.PREPROCESSED_DATA}/{OUT_NAME}/'
IMAGE_FOLDER = f'{folder}/cropped'
SEGEMNTATION_FOLDER = f'{folder}/seg_og/'
out_folders = {}
out_folders_wGT = {}
out_folders_viz = {}
for prediction_type in prediction_types:
out_folders[prediction_type] = f'{env_paths.PREPROCESSED_DATA}/{OUT_NAME}/p3dmm/{prediction_type}/'
out_folders_wGT[prediction_type] = f'{env_paths.PREPROCESSED_DATA}/{OUT_NAME}/p3dmm_wGT/{prediction_type}/'
os.makedirs(out_folders[prediction_type], exist_ok=True)
os.makedirs(out_folders_wGT[prediction_type], exist_ok=True)
out_folders_viz[prediction_type] = f'{env_paths.PREPROCESSED_DATA}/{OUT_NAME}/p3dmm_extraViz/{prediction_type}/'
os.makedirs(out_folders_viz[prediction_type], exist_ok=True)
image_names = os.listdir(f'{IMAGE_FOLDER}')
image_names.sort()
if os.path.exists(out_folders[prediction_type]):
if len(os.listdir(out_folders[prediction_type])) == len(image_names):
return
if model is None:
model = p3dmm_system.load_from_checkpoint(model_checkpoint, strict=False)
# TODO: disable randomness, dropout, etc...
# model.eval()
model = model.cuda()
for i in tqdm(range(len(image_names))):
#if not int(image_names[i].split('_')[0]) in [17, 175, 226, 279]:
# continue
try:
for i_batch in range(batch_size):
img = np.array(Image.open(f'{IMAGE_FOLDER}/{image_names[i]}').resize((512, 512))) / 255 # need 512,512 images as input; normalize to [0, 1] range
img = torch.from_numpy(img)[None, None].float().cuda() # 1,1,512,512,3
img_seg = np.array(Image.open(f'{SEGEMNTATION_FOLDER}/{image_names[i][:-4]}.png').resize((512, 512), Image.NEAREST))
if len(img_seg.shape) == 3:
img_seg = img_seg[..., 0]
#img_seg = np.array(Image.open(f'{SEGEMNTATION_FOLDER}/{int(image_names[i][:-4])*3:05d}.png').resize((512, 512), Image.NEAREST))
mask = ((img_seg == 2) | ((img_seg > 3) & (img_seg < 14)) ) & ~(img_seg==11)
mask = torch.from_numpy(mask).long().cuda()[None, None] # 1, 1, 512, 512
#mask = torch.ones_like(img[..., 0]).cuda().bool()
batch = {
'tar_msk': mask,
'tar_rgb': img,
}
batch_mirrored = {
'tar_rgb': torch.flip(batch['tar_rgb'], dims=[3]).cuda(),
'tar_msk': torch.flip(batch['tar_msk'], dims=[3]).cuda(),
}
# execute model twice, once with original image, once with mirrored original image,
# and then average results after undoing the mirroring operation on the prediction
with torch.no_grad():
output, conf = model.net(batch)
output_mirrored, conf = model.net(batch_mirrored)
if 'uv_map' in output:
fliped_uv_pred = torch.flip(output_mirrored['uv_map'], dims=[4])
fliped_uv_pred[:, :, 0, :, :] *= -1
fliped_uv_pred[:, :, 0, :, :] += 2*0.0075
output['uv_map'] = (output['uv_map'] + fliped_uv_pred)/2
if 'normals' in output:
fliped_uv_pred = torch.flip(output_mirrored['normals'], dims=[4])
fliped_uv_pred[:, :, 0, :, :] *= -1
output['normals'] = (output['normals'] + fliped_uv_pred)/2
if 'disps' in output:
fliped_uv_pred = torch.flip(output_mirrored['disps'], dims=[4])
fliped_uv_pred[:, :, 0, :, :] *= -1
output['disps'] = (output['disps'] + fliped_uv_pred)/2
for prediction_type in prediction_types:
for i_batch in range(batch_size):
i_view = 0
gt_rgb = batch['tar_rgb']
# normalize to [0,1] range
if prediction_type == 'uv_map':
tmp_output = torch.clamp((output[prediction_type][i_batch, i_view] + 1) / 2, 0, 1)
elif prediction_type == 'disps':
tmp_output = torch.clamp((output[prediction_type][i_batch, i_view] + 50) / 100, 0, 1)
elif prediction_type in ['normals', 'normals_can']:
tmp_output = output[prediction_type][i_batch, i_view]
tmp_output = tmp_output / torch.norm(tmp_output, dim=0).unsqueeze(0)
tmp_output = torch.clamp((tmp_output + 1) / 2, 0, 1)
# undo "weird" convention of normals that I used for preprocessing
tmp_output = torch.stack(
[tmp_output[0, ...], 1 - tmp_output[2, ...], 1 - tmp_output[1, ...]],
dim=0)
content = [
gt_rgb[i_batch, i_view].detach().cpu().numpy(),
pad_to_3_channels(tmp_output.permute(1, 2, 0).detach().cpu().float().numpy()),
]
catted = (np.concatenate(content, axis=1) * 255).astype(np.uint8)
Image.fromarray(catted).save(f'{out_folders_wGT[prediction_type]}/{image_names[i]}')
Image.fromarray(
pad_to_3_channels(
tmp_output.permute(1, 2, 0).detach().cpu().float().numpy() * 255).astype(
np.uint8)).save(
f'{out_folders[prediction_type]}/{image_names[i][:-4]}.png')
# this visulization is quite slow, therefore disable it per default
if prediction_type == 'uv_map' and cfg.viz_uv_mesh:
to_show_non_mirr = uv_pred_to_mesh(
output[prediction_type][i_batch:i_batch + 1, ...],
batch['tar_msk'][i_batch:i_batch + 1, ...],
batch['tar_rgb'][i_batch:i_batch + 1, ...],
right_ear = [537, 1334, 857, 554, 941],
left_ear = [541, 476, 237, 502, 286],
)
Image.fromarray(to_show_non_mirr).save(f'{out_folders_viz[prediction_type]}/{image_names[i]}')
except Exception as exx:
traceback.print_exc()
pass
print(f'''
<<<<<<<< FINISHED PIXEL3DMM INFERENCE for {cfg.video_name} in {prediction_types} MODE >>>>>>>>
''')
if __name__ == '__main__':
base_conf = OmegaConf.load(f'{env_paths.CODE_BASE}/configs/base.yaml')
cli_conf = OmegaConf.from_cli()
cfg = OmegaConf.merge(base_conf, cli_conf)
main(cfg)