Spaces:
Running
on
Zero
Running
on
Zero
import traceback | |
import os | |
import sys | |
import importlib | |
import mediapy | |
from PIL import Image | |
import tyro | |
import torchvision.transforms as transforms | |
from pixel3dmm import env_paths | |
sys.path.append(f'{env_paths.CODE_BASE}/src/pixel3dmm/preprocessing/PIPNet/FaceBoxesV2/') | |
from pixel3dmm.preprocessing.pipnet_utils import demo_image | |
from pixel3dmm import env_paths | |
def run(exp_path, image_dir, start_frame = 0, | |
vertical_crop : bool = False, | |
static_crop : bool = False, | |
max_bbox : bool = False, | |
disable_cropping : bool = False, | |
): | |
experiment_name = exp_path.split('/')[-1][:-3] | |
data_name = exp_path.split('/')[-2] | |
config_path = '.experiments.{}.{}'.format(data_name, experiment_name) | |
my_config = importlib.import_module(config_path, package='pixel3dmm.preprocessing.PIPNet') | |
Config = getattr(my_config, 'Config') | |
cfg = Config() | |
cfg.experiment_name = experiment_name | |
cfg.data_name = data_name | |
save_dir = os.path.join(f'{env_paths.CODE_BASE}/src/pixel3dmm/preprocessing/PIPNet/snapshots', cfg.data_name, cfg.experiment_name) | |
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], | |
std=[0.229, 0.224, 0.225]) | |
preprocess = transforms.Compose( | |
[transforms.Resize((cfg.input_size, cfg.input_size)), transforms.ToTensor(), normalize]) | |
#for pid in pids: | |
pid = "FaMoS_180424_03335_TA_selfie_IMG_0092.jpg" | |
pid = "FaMoS_180426_03336_TA_selfie_IMG_0152.jpg" | |
demo_image(image_dir, pid, save_dir, preprocess, cfg, cfg.input_size, cfg.net_stride, cfg.num_nb, | |
cfg.use_gpu, | |
start_frame=start_frame, vertical_crop=vertical_crop, static_crop=static_crop, max_bbox=max_bbox, | |
disable_cropping=disable_cropping) | |
def unpack_images(base_path, video_or_images_path): | |
if not os.path.exists(base_path): | |
os.makedirs(base_path, exist_ok=True) | |
if os.path.isdir(video_or_images_path): | |
files = os.listdir(f'{video_or_images_path}') | |
files.sort() | |
if len(os.listdir(base_path)) == len(files): | |
print(f''' | |
<<<<<<<< ALREADY COMPLETED IMAGE CROPPING for {video_or_images_path}, SKIPPING! >>>>>>>> | |
''') | |
return | |
for i, file in enumerate(files): | |
I = Image.open(f'{video_or_images_path}/{file}') | |
I.save(f'{base_path}/{i:05d}.jpg', quality=95) | |
elif video_or_images_path.endswith('.jpg') or video_or_images_path.endswith('.jpeg') or video_or_images_path.endswith('.png'): | |
Image.open(video_or_images_path).save(f'{base_path}/{0:05d}.jpg', quality=95) | |
else: | |
frames = mediapy.read_video(f'{video_or_images_path}') | |
if len(frames) == len(os.listdir(base_path)): | |
return | |
for i, frame in enumerate(frames): | |
Image.fromarray(frame).save(f'{base_path}/{i:05d}.jpg', quality=95) | |
def main(video_or_images_path : str, | |
max_bbox : bool = True, # not used | |
disable_cropping : bool = False): | |
if os.path.isdir(video_or_images_path): | |
video_name = video_or_images_path.split('/')[-1] | |
else: | |
video_name = video_or_images_path.split('/')[-1][:-4] | |
base_path = f'{env_paths.PREPROCESSED_DATA}/{video_name}/rgb/' | |
unpack_images(base_path, video_or_images_path) | |
start_frame = -1 | |
run('experiments/WFLW/pip_32_16_60_r18_l2_l1_10_1_nb10.py', base_path, start_frame=start_frame, vertical_crop=False, | |
static_crop=True, max_bbox=max_bbox, disable_cropping=disable_cropping) | |
# run('experiments/WFLW/pip_32_16_60_r101_l2_l1_10_1_nb10.py', base_path, start_frame=start_frame, vertical_crop=False, static_crop=True) | |
if __name__ == '__main__': | |
tyro.cli(main) | |