Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -32,11 +32,9 @@ import importlib, site; site.addsitedir(site.getsitepackages()[0]); importlib.in
|
|
32 |
|
33 |
from pixel3dmm import env_paths
|
34 |
|
35 |
-
|
36 |
sh("cd src/pixel3dmm/preprocessing/facer && pip install -e . && cd ../../../..")
|
37 |
sh("cd src/pixel3dmm/preprocessing/PIPNet/FaceBoxesV2/utils && sh make.sh && cd ../../../../../..")
|
38 |
|
39 |
-
|
40 |
def install_cuda_toolkit():
|
41 |
CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.1.0/local_installers/cuda_12.1.0_530.30.02_linux.run"
|
42 |
CUDA_TOOLKIT_FILE = "/tmp/%s" % os.path.basename(CUDA_TOOLKIT_URL)
|
@@ -57,12 +55,10 @@ def install_cuda_toolkit():
|
|
57 |
install_cuda_toolkit()
|
58 |
|
59 |
from omegaconf import OmegaConf
|
|
|
60 |
|
61 |
DEVICE = "cuda"
|
62 |
|
63 |
-
# 1. Prepare config at import time (no CUDA calls)
|
64 |
-
base_conf = OmegaConf.load("configs/tracking.yaml")
|
65 |
-
|
66 |
# 2. Empty cache for our heavy objects
|
67 |
_model_cache = {}
|
68 |
|
@@ -87,16 +83,16 @@ def reset_all():
|
|
87 |
"Awaiting new image upload...", # status
|
88 |
{}, # state
|
89 |
gr.update(interactive=True), # preprocess_btn
|
90 |
-
gr.update(interactive=
|
91 |
-
gr.update(interactive=
|
92 |
-
gr.update(interactive=
|
93 |
)
|
94 |
|
95 |
# Step 1: Preprocess the input image (Save and Crop)
|
96 |
@spaces.GPU()
|
97 |
def preprocess_image(image_array, state):
|
98 |
if image_array is None:
|
99 |
-
return "β Please upload an image first.", None, state, gr.update(interactive=True), gr.update(interactive=
|
100 |
|
101 |
session_id = str(uuid.uuid4())
|
102 |
base_dir = os.path.join(os.environ["PIXEL3DMM_PREPROCESSED_DATA"], session_id)
|
@@ -115,54 +111,63 @@ def preprocess_image(image_array, state):
|
|
115 |
except subprocess.CalledProcessError as e:
|
116 |
err = f"β Preprocess failed (exit {e.returncode}).\n\n{e.stdout}\n{e.stderr}"
|
117 |
shutil.rmtree(base_dir)
|
118 |
-
return err, None, {}, gr.update(interactive=True), gr.update(interactive=
|
119 |
|
120 |
crop_dir = os.path.join(base_dir, "cropped")
|
121 |
image = first_image_from_dir(crop_dir)
|
122 |
-
return "β
Step 1 complete. Ready for Normals.", image, state, gr.update(interactive=
|
123 |
|
124 |
# Step 2: Normals inference β normals image
|
125 |
@spaces.GPU()
|
126 |
def step2_normals(state):
|
127 |
-
session_id = state.get("session_id")
|
128 |
-
if not session_id:
|
129 |
-
return "β State lost. Please start from Step 1.", None, state, gr.update(interactive=False), gr.update(interactive=False)
|
130 |
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
|
|
|
|
|
|
|
|
|
|
138 |
|
139 |
normals_dir = os.path.join(state["base_dir"], "p3dmm", "normals")
|
140 |
image = first_image_from_dir(normals_dir)
|
141 |
-
|
|
|
142 |
|
143 |
# Step 3: UV map inference β uv map image
|
144 |
@spaces.GPU()
|
145 |
def step3_uv_map(state):
|
146 |
-
session_id = state.get("session_id")
|
147 |
-
if not session_id:
|
148 |
-
return "β State lost. Please start from Step 1.", None, state, gr.update(interactive=False), gr.update(interactive=False)
|
149 |
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
|
158 |
uv_dir = os.path.join(state["base_dir"], "p3dmm", "uv_map")
|
159 |
image = first_image_from_dir(uv_dir)
|
160 |
-
|
|
|
161 |
|
162 |
# Step 4: Tracking β final tracking image
|
163 |
@spaces.GPU()
|
164 |
def step4_track(state):
|
165 |
|
|
|
|
|
166 |
# Lazy init + caching of FLAME model on GPU
|
167 |
if "flame_model" not in _model_cache:
|
168 |
import os
|
@@ -175,7 +180,7 @@ def step4_track(state):
|
|
175 |
from pixel3dmm.tracking.renderer_nvdiffrast import NVDRenderer
|
176 |
from pixel3dmm.tracking.tracker import Tracker
|
177 |
|
178 |
-
flame = FLAME(
|
179 |
flame = flame.to(DEVICE) # CUDA init happens here
|
180 |
_model_cache["flame_model"] = flame
|
181 |
|
@@ -184,24 +189,23 @@ def step4_track(state):
|
|
184 |
_obj_faces = load_obj(_mesh_file)[1]
|
185 |
|
186 |
_model_cache["diff_renderer"] = NVDRenderer(
|
187 |
-
image_size=
|
188 |
obj_filename=_mesh_file,
|
189 |
no_sh=False,
|
190 |
white_bg=True
|
191 |
).to(DEVICE)
|
192 |
-
|
193 |
-
|
194 |
flame_model = _model_cache["flame_model"]
|
195 |
diff_renderer = _model_cache["diff_renderer"]
|
196 |
session_id = state.get("session_id")
|
197 |
-
|
198 |
-
tracker = Tracker(
|
199 |
tracker.run()
|
200 |
|
201 |
tracking_dir = os.path.join(os.environ["PIXEL3DMM_TRACKING_OUTPUT"], session_id, "frames")
|
202 |
image = first_image_from_dir(tracking_dir)
|
203 |
|
204 |
-
return "β
Pipeline complete!", image, state, gr.update(interactive=
|
205 |
|
206 |
# Build Gradio UI
|
207 |
demo = gr.Blocks()
|
@@ -212,7 +216,7 @@ with demo:
|
|
212 |
with gr.Row():
|
213 |
with gr.Column():
|
214 |
image_in = gr.Image(label="Upload Image", type="numpy", height=512)
|
215 |
-
status = gr.Textbox(label="Status", lines=2, interactive=
|
216 |
state = gr.State({})
|
217 |
with gr.Column():
|
218 |
with gr.Row():
|
@@ -224,9 +228,9 @@ with demo:
|
|
224 |
|
225 |
with gr.Row():
|
226 |
preprocess_btn = gr.Button("Step 1: Preprocess", interactive=True)
|
227 |
-
normals_btn = gr.Button("Step 2: Normals", interactive=
|
228 |
-
uv_map_btn = gr.Button("Step 3: UV Map", interactive=
|
229 |
-
track_btn = gr.Button("Step 4: Track", interactive=
|
230 |
|
231 |
# Define component list for reset
|
232 |
outputs_for_reset = [crop_img, normals_img, uv_img, track_img, status, state, preprocess_btn, normals_btn, uv_map_btn, track_btn]
|
|
|
32 |
|
33 |
from pixel3dmm import env_paths
|
34 |
|
|
|
35 |
sh("cd src/pixel3dmm/preprocessing/facer && pip install -e . && cd ../../../..")
|
36 |
sh("cd src/pixel3dmm/preprocessing/PIPNet/FaceBoxesV2/utils && sh make.sh && cd ../../../../../..")
|
37 |
|
|
|
38 |
def install_cuda_toolkit():
|
39 |
CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.1.0/local_installers/cuda_12.1.0_530.30.02_linux.run"
|
40 |
CUDA_TOOLKIT_FILE = "/tmp/%s" % os.path.basename(CUDA_TOOLKIT_URL)
|
|
|
55 |
install_cuda_toolkit()
|
56 |
|
57 |
from omegaconf import OmegaConf
|
58 |
+
from pixel3dmm.network_inference import normals_n_uvs
|
59 |
|
60 |
DEVICE = "cuda"
|
61 |
|
|
|
|
|
|
|
62 |
# 2. Empty cache for our heavy objects
|
63 |
_model_cache = {}
|
64 |
|
|
|
83 |
"Awaiting new image upload...", # status
|
84 |
{}, # state
|
85 |
gr.update(interactive=True), # preprocess_btn
|
86 |
+
gr.update(interactive=True), # normals_btn
|
87 |
+
gr.update(interactive=True), # uv_map_btn
|
88 |
+
gr.update(interactive=True) # track_btn
|
89 |
)
|
90 |
|
91 |
# Step 1: Preprocess the input image (Save and Crop)
|
92 |
@spaces.GPU()
|
93 |
def preprocess_image(image_array, state):
|
94 |
if image_array is None:
|
95 |
+
return "β Please upload an image first.", None, state, gr.update(interactive=True), gr.update(interactive=True)
|
96 |
|
97 |
session_id = str(uuid.uuid4())
|
98 |
base_dir = os.path.join(os.environ["PIXEL3DMM_PREPROCESSED_DATA"], session_id)
|
|
|
111 |
except subprocess.CalledProcessError as e:
|
112 |
err = f"β Preprocess failed (exit {e.returncode}).\n\n{e.stdout}\n{e.stderr}"
|
113 |
shutil.rmtree(base_dir)
|
114 |
+
return err, None, {}, gr.update(interactive=True), gr.update(interactive=True)
|
115 |
|
116 |
crop_dir = os.path.join(base_dir, "cropped")
|
117 |
image = first_image_from_dir(crop_dir)
|
118 |
+
return "β
Step 1 complete. Ready for Normals.", image, state, gr.update(interactive=True), gr.update(interactive=True)
|
119 |
|
120 |
# Step 2: Normals inference β normals image
|
121 |
@spaces.GPU()
|
122 |
def step2_normals(state):
|
|
|
|
|
|
|
123 |
|
124 |
+
base_conf = OmegaConf.load("configs/base.yaml")
|
125 |
+
|
126 |
+
if "normals_model" not in _model_cache:
|
127 |
+
from pixel3dmm.lightning.p3dmm_system import system as p3dmm_system
|
128 |
+
|
129 |
+
model = p3dmm_system.load_from_checkpoint(f"{env_paths.CKPT_N_PRED}", strict=False)
|
130 |
+
model = model.eval().to(DEVICE)
|
131 |
+
_model_cache["normals_model"] = model
|
132 |
+
|
133 |
+
session_id = state.get("session_id")
|
134 |
+
base_conf.video_name = f'{session_id}'
|
135 |
+
normals_n_uvs(base_conf, _model_cache["normals_model"])
|
136 |
|
137 |
normals_dir = os.path.join(state["base_dir"], "p3dmm", "normals")
|
138 |
image = first_image_from_dir(normals_dir)
|
139 |
+
|
140 |
+
return "β
Step 2 complete. Ready for UV Map.", image, state, gr.update(interactive=True), gr.update(interactive=True)
|
141 |
|
142 |
# Step 3: UV map inference β uv map image
|
143 |
@spaces.GPU()
|
144 |
def step3_uv_map(state):
|
|
|
|
|
|
|
145 |
|
146 |
+
base_conf = OmegaConf.load("configs/base.yaml")
|
147 |
+
|
148 |
+
if "uv_model" not in _model_cache:
|
149 |
+
from pixel3dmm.lightning.p3dmm_system import system as p3dmm_system
|
150 |
+
|
151 |
+
model = p3dmm_system.load_from_checkpoint(f"{env_paths.CKPT_UV_PRED}", strict=False)
|
152 |
+
model = model.eval().to(DEVICE)
|
153 |
+
_model_cache["uv_model"] = model
|
154 |
+
|
155 |
+
session_id = state.get("session_id")
|
156 |
+
base_conf.video_name = f'{session_id}'
|
157 |
+
base_conf.model.prediction_type = "uv_map"
|
158 |
+
normals_n_uvs(base_conf, _model_cache["uv_model"])
|
159 |
|
160 |
uv_dir = os.path.join(state["base_dir"], "p3dmm", "uv_map")
|
161 |
image = first_image_from_dir(uv_dir)
|
162 |
+
|
163 |
+
return "β
Step 3 complete. Ready for Tracking.", image, state, gr.update(interactive=True), gr.update(interactive=True)
|
164 |
|
165 |
# Step 4: Tracking β final tracking image
|
166 |
@spaces.GPU()
|
167 |
def step4_track(state):
|
168 |
|
169 |
+
tracking_conf = OmegaConf.load("configs/tracking.yaml")
|
170 |
+
|
171 |
# Lazy init + caching of FLAME model on GPU
|
172 |
if "flame_model" not in _model_cache:
|
173 |
import os
|
|
|
180 |
from pixel3dmm.tracking.renderer_nvdiffrast import NVDRenderer
|
181 |
from pixel3dmm.tracking.tracker import Tracker
|
182 |
|
183 |
+
flame = FLAME(tracking_conf) # CPU instantiation
|
184 |
flame = flame.to(DEVICE) # CUDA init happens here
|
185 |
_model_cache["flame_model"] = flame
|
186 |
|
|
|
189 |
_obj_faces = load_obj(_mesh_file)[1]
|
190 |
|
191 |
_model_cache["diff_renderer"] = NVDRenderer(
|
192 |
+
image_size=tracking_conf.size,
|
193 |
obj_filename=_mesh_file,
|
194 |
no_sh=False,
|
195 |
white_bg=True
|
196 |
).to(DEVICE)
|
197 |
+
|
|
|
198 |
flame_model = _model_cache["flame_model"]
|
199 |
diff_renderer = _model_cache["diff_renderer"]
|
200 |
session_id = state.get("session_id")
|
201 |
+
tracking_conf.video_name = f'{session_id}'
|
202 |
+
tracker = Tracker(tracking_conf, flame_model, diff_renderer)
|
203 |
tracker.run()
|
204 |
|
205 |
tracking_dir = os.path.join(os.environ["PIXEL3DMM_TRACKING_OUTPUT"], session_id, "frames")
|
206 |
image = first_image_from_dir(tracking_dir)
|
207 |
|
208 |
+
return "β
Pipeline complete!", image, state, gr.update(interactive=True)
|
209 |
|
210 |
# Build Gradio UI
|
211 |
demo = gr.Blocks()
|
|
|
216 |
with gr.Row():
|
217 |
with gr.Column():
|
218 |
image_in = gr.Image(label="Upload Image", type="numpy", height=512)
|
219 |
+
status = gr.Textbox(label="Status", lines=2, interactive=True, value="Upload an image to start.")
|
220 |
state = gr.State({})
|
221 |
with gr.Column():
|
222 |
with gr.Row():
|
|
|
228 |
|
229 |
with gr.Row():
|
230 |
preprocess_btn = gr.Button("Step 1: Preprocess", interactive=True)
|
231 |
+
normals_btn = gr.Button("Step 2: Normals", interactive=True)
|
232 |
+
uv_map_btn = gr.Button("Step 3: UV Map", interactive=True)
|
233 |
+
track_btn = gr.Button("Step 4: Track", interactive=True)
|
234 |
|
235 |
# Define component list for reset
|
236 |
outputs_for_reset = [crop_img, normals_img, uv_img, track_img, status, state, preprocess_btn, normals_btn, uv_map_btn, track_btn]
|