Spaces:
Running
on
Zero
Running
on
Zero
Delete src/network_inference.py
Browse files- src/network_inference.py +0 -191
src/network_inference.py
DELETED
@@ -1,191 +0,0 @@
|
|
1 |
-
import traceback
|
2 |
-
|
3 |
-
from tqdm import tqdm
|
4 |
-
import os
|
5 |
-
import torch
|
6 |
-
import numpy as np
|
7 |
-
from PIL import Image
|
8 |
-
from omegaconf import OmegaConf
|
9 |
-
from time import time
|
10 |
-
|
11 |
-
from pixel3dmm.utils.uv import uv_pred_to_mesh
|
12 |
-
from pixel3dmm.lightning.p3dmm_system import system as p3dmm_system
|
13 |
-
#from pixel3dmm.lightning.system_flame_params_legacy import system as system_flame_params_legacy
|
14 |
-
from pixel3dmm import env_paths
|
15 |
-
|
16 |
-
|
17 |
-
def pad_to_3_channels(img):
|
18 |
-
if img.shape[-1] == 3:
|
19 |
-
return img
|
20 |
-
elif img.shape[-1] == 1:
|
21 |
-
return np.concatenate([img, np.zeros_like(img[..., :1]), np.zeros_like(img[..., :1])], axis=-1)
|
22 |
-
elif img.shape[-1] == 2:
|
23 |
-
return np.concatenate([img, np.zeros_like(img[..., :1])], axis=-1)
|
24 |
-
else:
|
25 |
-
raise ValueError('too many dimensions in prediction type!')
|
26 |
-
|
27 |
-
def gaussian_fn(M, std):
|
28 |
-
n = torch.arange(0, M) - (M - 1.0) / 2.0
|
29 |
-
sig2 = 2 * std * std
|
30 |
-
w = torch.exp(-n ** 2 / sig2)
|
31 |
-
return w
|
32 |
-
|
33 |
-
|
34 |
-
def gkern(kernlen=256, std=128):
|
35 |
-
"""Returns a 2D Gaussian kernel array."""
|
36 |
-
gkern1d_x = gaussian_fn(kernlen, std=std * 5)
|
37 |
-
gkern1d_y = gaussian_fn(kernlen, std=std)
|
38 |
-
gkern2d = torch.outer(gkern1d_y, gkern1d_x)
|
39 |
-
return gkern2d
|
40 |
-
|
41 |
-
|
42 |
-
valid_verts = np.load(f'{env_paths.VALID_VERTICES_WIDE_REGION}')
|
43 |
-
|
44 |
-
|
45 |
-
def normals_n_uvs(cfg, model):
|
46 |
-
if cfg.model.prediction_type == 'flame_params':
|
47 |
-
cfg.data.mirror_aug = False
|
48 |
-
|
49 |
-
# data loader
|
50 |
-
if cfg.model.feature_map_type == 'DINO':
|
51 |
-
feature_map_size = 32
|
52 |
-
elif cfg.model.feature_map_type == 'sapiens':
|
53 |
-
feature_map_size = 64
|
54 |
-
|
55 |
-
batch_size = 1 # cfg.inference_batch_size
|
56 |
-
|
57 |
-
prediction_types = cfg.model.prediction_type.split(',')
|
58 |
-
|
59 |
-
conv = torch.nn.Conv2d(in_channels=1, out_channels=1, kernel_size=11, bias=False, padding='same')
|
60 |
-
g_weights = gkern(11, 2)
|
61 |
-
g_weights /= torch.sum(g_weights)
|
62 |
-
conv.weight = torch.nn.Parameter(g_weights.unsqueeze(0).unsqueeze(0))
|
63 |
-
|
64 |
-
OUT_NAMES = str(cfg.video_name).split(',')
|
65 |
-
|
66 |
-
print(f"""
|
67 |
-
<<<<<<<< STARTING PIXEL3DMM INFERENCE for {cfg.video_name} in {prediction_types} MODE >>>>>>>>
|
68 |
-
""")
|
69 |
-
|
70 |
-
for OUT_NAME in OUT_NAMES:
|
71 |
-
folder = f'{env_paths.PREPROCESSED_DATA}/{OUT_NAME}/'
|
72 |
-
IMAGE_FOLDER = f'{folder}/cropped'
|
73 |
-
SEGMENTATION_FOLDER = f'{folder}/seg_og/'
|
74 |
-
|
75 |
-
out_folders = {}
|
76 |
-
out_folders_wGT = {}
|
77 |
-
out_folders_viz = {}
|
78 |
-
|
79 |
-
for prediction_type in prediction_types:
|
80 |
-
out_folders[prediction_type] = f'{env_paths.PREPROCESSED_DATA}/{OUT_NAME}/p3dmm/{prediction_type}/'
|
81 |
-
out_folders_wGT[prediction_type] = f'{env_paths.PREPROCESSED_DATA}/{OUT_NAME}/p3dmm_wGT/{prediction_type}/'
|
82 |
-
os.makedirs(out_folders[prediction_type], exist_ok=True)
|
83 |
-
os.makedirs(out_folders_wGT[prediction_type], exist_ok=True)
|
84 |
-
out_folders_viz[prediction_type] = f'{env_paths.PREPROCESSED_DATA}/{OUT_NAME}/p3dmm_extraViz/{prediction_type}/'
|
85 |
-
os.makedirs(out_folders_viz[prediction_type], exist_ok=True)
|
86 |
-
|
87 |
-
|
88 |
-
image_names = os.listdir(f'{IMAGE_FOLDER}')
|
89 |
-
image_names.sort()
|
90 |
-
|
91 |
-
if os.path.exists(out_folders[prediction_type]):
|
92 |
-
if len(os.listdir(out_folders[prediction_type])) == len(image_names):
|
93 |
-
return
|
94 |
-
|
95 |
-
for i in tqdm(range(len(image_names))):
|
96 |
-
try:
|
97 |
-
img = np.array(Image.open(f'{IMAGE_FOLDER}/{image_names[i]}').resize((512, 512))) / 255 # need 512,512 images as input; normalize to [0, 1] range
|
98 |
-
img = torch.from_numpy(img)[None, None].float().cuda() # 1,1,512,512,3
|
99 |
-
img_seg = np.array(Image.open(f'{SEGMENTATION_FOLDER}/{image_names[i][:-4]}.png').resize((512, 512), Image.NEAREST))
|
100 |
-
if len(img_seg.shape) == 3:
|
101 |
-
img_seg = img_seg[..., 0]
|
102 |
-
#img_seg = np.array(Image.open(f'{SEGEMNTATION_FOLDER}/{int(image_names[i][:-4])*3:05d}.png').resize((512, 512), Image.NEAREST))
|
103 |
-
mask = ((img_seg == 2) | ((img_seg > 3) & (img_seg < 14)) ) & ~(img_seg==11)
|
104 |
-
mask = torch.from_numpy(mask).long().cuda()[None, None] # 1, 1, 512, 512
|
105 |
-
#mask = torch.ones_like(img[..., 0]).cuda().bool()
|
106 |
-
batch = {
|
107 |
-
'tar_msk': mask,
|
108 |
-
'tar_rgb': img,
|
109 |
-
}
|
110 |
-
batch_mirrored = {
|
111 |
-
'tar_rgb': torch.flip(batch['tar_rgb'], dims=[3]).cuda(),
|
112 |
-
'tar_msk': torch.flip(batch['tar_msk'], dims=[3]).cuda(),
|
113 |
-
}
|
114 |
-
|
115 |
-
with torch.no_grad():
|
116 |
-
output, conf = model.net(batch)
|
117 |
-
output_mirrored, conf = model.net(batch_mirrored)
|
118 |
-
|
119 |
-
if 'uv_map' in output:
|
120 |
-
fliped_uv_pred = torch.flip(output_mirrored['uv_map'], dims=[4])
|
121 |
-
fliped_uv_pred[:, :, 0, :, :] *= -1
|
122 |
-
fliped_uv_pred[:, :, 0, :, :] += 2*0.0075
|
123 |
-
output['uv_map'] = (output['uv_map'] + fliped_uv_pred)/2
|
124 |
-
if 'normals' in output:
|
125 |
-
fliped_uv_pred = torch.flip(output_mirrored['normals'], dims=[4])
|
126 |
-
fliped_uv_pred[:, :, 0, :, :] *= -1
|
127 |
-
output['normals'] = (output['normals'] + fliped_uv_pred)/2
|
128 |
-
if 'disps' in output:
|
129 |
-
fliped_uv_pred = torch.flip(output_mirrored['disps'], dims=[4])
|
130 |
-
fliped_uv_pred[:, :, 0, :, :] *= -1
|
131 |
-
output['disps'] = (output['disps'] + fliped_uv_pred)/2
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
for prediction_type in prediction_types:
|
136 |
-
for i_batch in range(batch_size):
|
137 |
-
|
138 |
-
i_view = 0
|
139 |
-
gt_rgb = batch['tar_rgb']
|
140 |
-
|
141 |
-
# normalize to [0,1] range
|
142 |
-
if prediction_type == 'uv_map':
|
143 |
-
tmp_output = torch.clamp((output[prediction_type][i_batch, i_view] + 1) / 2, 0, 1)
|
144 |
-
elif prediction_type == 'disps':
|
145 |
-
tmp_output = torch.clamp((output[prediction_type][i_batch, i_view] + 50) / 100, 0, 1)
|
146 |
-
elif prediction_type in ['normals', 'normals_can']:
|
147 |
-
tmp_output = output[prediction_type][i_batch, i_view]
|
148 |
-
tmp_output = tmp_output / torch.norm(tmp_output, dim=0).unsqueeze(0)
|
149 |
-
tmp_output = torch.clamp((tmp_output + 1) / 2, 0, 1)
|
150 |
-
# undo "weird" convention of normals that I used for preprocessing
|
151 |
-
tmp_output = torch.stack(
|
152 |
-
[tmp_output[0, ...], 1 - tmp_output[2, ...], 1 - tmp_output[1, ...]],
|
153 |
-
dim=0)
|
154 |
-
|
155 |
-
|
156 |
-
content = [
|
157 |
-
gt_rgb[i_batch, i_view].detach().cpu().numpy(),
|
158 |
-
pad_to_3_channels(tmp_output.permute(1, 2, 0).detach().cpu().float().numpy()),
|
159 |
-
]
|
160 |
-
|
161 |
-
catted = (np.concatenate(content, axis=1) * 255).astype(np.uint8)
|
162 |
-
Image.fromarray(catted).save(f'{out_folders_wGT[prediction_type]}/{image_names[i]}')
|
163 |
-
|
164 |
-
|
165 |
-
Image.fromarray(
|
166 |
-
pad_to_3_channels(
|
167 |
-
tmp_output.permute(1, 2, 0).detach().cpu().float().numpy() * 255).astype(
|
168 |
-
np.uint8)).save(
|
169 |
-
f'{out_folders[prediction_type]}/{image_names[i][:-4]}.png')
|
170 |
-
|
171 |
-
|
172 |
-
# this visulization is quite slow, therefore disable it per default
|
173 |
-
if prediction_type == 'uv_map' and cfg.viz_uv_mesh:
|
174 |
-
to_show_non_mirr = uv_pred_to_mesh(
|
175 |
-
output[prediction_type][i_batch:i_batch + 1, ...],
|
176 |
-
batch['tar_msk'][i_batch:i_batch + 1, ...],
|
177 |
-
batch['tar_rgb'][i_batch:i_batch + 1, ...],
|
178 |
-
right_ear = [537, 1334, 857, 554, 941],
|
179 |
-
left_ear = [541, 476, 237, 502, 286],
|
180 |
-
)
|
181 |
-
|
182 |
-
Image.fromarray(to_show_non_mirr).save(f'{out_folders_viz[prediction_type]}/{image_names[i]}')
|
183 |
-
|
184 |
-
|
185 |
-
except Exception:
|
186 |
-
traceback.print_exc()
|
187 |
-
|
188 |
-
print(f"""
|
189 |
-
<<<<<<<< FINISHED PIXEL3DMM INFERENCE for {cfg.video_name} in {prediction_types} MODE >>>>>>>>
|
190 |
-
""")
|
191 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|