Spaces:
Running
on
Zero
Running
on
Zero
Upload transform.py
Browse files
src/pixel3dmm/preprocessing/facer/facer/transform.py
ADDED
@@ -0,0 +1,397 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Dict, Callable, Tuple, Optional
|
2 |
+
import torch
|
3 |
+
import torch.nn.functional as F
|
4 |
+
import functools
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
|
8 |
+
def get_crop_and_resize_matrix(
|
9 |
+
box: torch.Tensor, target_shape: Tuple[int, int],
|
10 |
+
target_face_scale: float = 1.0, make_square_crop: bool = True,
|
11 |
+
offset_xy: Optional[Tuple[float, float]] = None, align_corners: bool = True,
|
12 |
+
offset_box_coords: bool = False) -> torch.Tensor:
|
13 |
+
"""
|
14 |
+
Args:
|
15 |
+
box: b x 4(x1, y1, x2, y2)
|
16 |
+
align_corners (bool): Set this to `True` only if the box you give has coordinates
|
17 |
+
ranging from `0` to `h-1` or `w-1`.
|
18 |
+
|
19 |
+
offset_box_coords (bool): Set this to `True` if the box you give has coordinates
|
20 |
+
ranging from `0` to `h` or `w`.
|
21 |
+
|
22 |
+
Set this to `False` if the box coordinates range from `-0.5` to `h-0.5` or `w-0.5`.
|
23 |
+
|
24 |
+
If the box coordinates range from `0` to `h-1` or `w-1`, set `align_corners=True`.
|
25 |
+
|
26 |
+
Returns:
|
27 |
+
torch.Tensor: b x 3 x 3.
|
28 |
+
"""
|
29 |
+
if offset_xy is None:
|
30 |
+
offset_xy = (0.0, 0.0)
|
31 |
+
|
32 |
+
x1, y1, x2, y2 = box.split(1, dim=1) # b x 1
|
33 |
+
cx = (x1 + x2) / 2 + offset_xy[0]
|
34 |
+
cy = (y1 + y2) / 2 + offset_xy[1]
|
35 |
+
rx = (x2 - x1) / 2 / target_face_scale
|
36 |
+
ry = (y2 - y1) / 2 / target_face_scale
|
37 |
+
if make_square_crop:
|
38 |
+
rx = ry = torch.maximum(rx, ry)
|
39 |
+
|
40 |
+
x1, y1, x2, y2 = cx - rx, cy - ry, cx + rx, cy + ry
|
41 |
+
|
42 |
+
h, w, *_ = target_shape
|
43 |
+
|
44 |
+
zeros_pl = torch.zeros_like(x1)
|
45 |
+
ones_pl = torch.ones_like(x1)
|
46 |
+
|
47 |
+
if align_corners:
|
48 |
+
# x -> (x - x1) / (x2 - x1) * (w - 1)
|
49 |
+
# y -> (y - y1) / (y2 - y1) * (h - 1)
|
50 |
+
ax = 1.0 / (x2 - x1) * (w - 1)
|
51 |
+
ay = 1.0 / (y2 - y1) * (h - 1)
|
52 |
+
matrix = torch.cat([
|
53 |
+
ax, zeros_pl, -x1 * ax,
|
54 |
+
zeros_pl, ay, -y1 * ay,
|
55 |
+
zeros_pl, zeros_pl, ones_pl
|
56 |
+
], dim=1).reshape(-1, 3, 3) # b x 3 x 3
|
57 |
+
else:
|
58 |
+
if offset_box_coords:
|
59 |
+
# x1, x2 \in [0, w], y1, y2 \in [0, h]
|
60 |
+
# first we should offset x1, x2, y1, y2 to be ranging in
|
61 |
+
# [-0.5, w-0.5] and [-0.5, h-0.5]
|
62 |
+
# so to convert these pixel coordinates into boundary coordinates.
|
63 |
+
x1, x2, y1, y2 = x1-0.5, x2-0.5, y1-0.5, y2-0.5
|
64 |
+
|
65 |
+
# x -> (x - x1) / (x2 - x1) * w - 0.5
|
66 |
+
# y -> (y - y1) / (y2 - y1) * h - 0.5
|
67 |
+
ax = 1.0 / (x2 - x1) * w
|
68 |
+
ay = 1.0 / (y2 - y1) * h
|
69 |
+
matrix = torch.cat([
|
70 |
+
ax, zeros_pl, -x1 * ax - 0.5*ones_pl,
|
71 |
+
zeros_pl, ay, -y1 * ay - 0.5*ones_pl,
|
72 |
+
zeros_pl, zeros_pl, ones_pl
|
73 |
+
], dim=1).reshape(-1, 3, 3) # b x 3 x 3
|
74 |
+
return matrix
|
75 |
+
|
76 |
+
|
77 |
+
def get_similarity_transform_matrix(
|
78 |
+
from_pts: torch.Tensor, to_pts: torch.Tensor) -> torch.Tensor:
|
79 |
+
"""
|
80 |
+
Args:
|
81 |
+
from_pts, to_pts: b x n x 2
|
82 |
+
|
83 |
+
Returns:
|
84 |
+
torch.Tensor: b x 3 x 3
|
85 |
+
"""
|
86 |
+
mfrom = from_pts.mean(dim=1, keepdim=True) # b x 1 x 2
|
87 |
+
mto = to_pts.mean(dim=1, keepdim=True) # b x 1 x 2
|
88 |
+
|
89 |
+
a1 = (from_pts - mfrom).square().sum([1, 2], keepdim=False) # b
|
90 |
+
c1 = ((to_pts - mto) * (from_pts - mfrom)).sum([1, 2], keepdim=False) # b
|
91 |
+
|
92 |
+
to_delta = to_pts - mto
|
93 |
+
from_delta = from_pts - mfrom
|
94 |
+
c2 = (to_delta[:, :, 0] * from_delta[:, :, 1] - to_delta[:,
|
95 |
+
:, 1] * from_delta[:, :, 0]).sum([1], keepdim=False) # b
|
96 |
+
|
97 |
+
a = c1 / a1
|
98 |
+
b = c2 / a1
|
99 |
+
dx = mto[:, 0, 0] - a * mfrom[:, 0, 0] - b * mfrom[:, 0, 1] # b
|
100 |
+
dy = mto[:, 0, 1] + b * mfrom[:, 0, 0] - a * mfrom[:, 0, 1] # b
|
101 |
+
|
102 |
+
ones_pl = torch.ones_like(a1)
|
103 |
+
zeros_pl = torch.zeros_like(a1)
|
104 |
+
|
105 |
+
return torch.stack([
|
106 |
+
a, b, dx,
|
107 |
+
-b, a, dy,
|
108 |
+
zeros_pl, zeros_pl, ones_pl,
|
109 |
+
], dim=-1).reshape(-1, 3, 3)
|
110 |
+
|
111 |
+
|
112 |
+
@functools.lru_cache()
|
113 |
+
def _standard_face_pts():
|
114 |
+
pts = torch.tensor([
|
115 |
+
196.0, 226.0,
|
116 |
+
316.0, 226.0,
|
117 |
+
256.0, 286.0,
|
118 |
+
220.0, 360.4,
|
119 |
+
292.0, 360.4], dtype=torch.float32) / 256.0 - 1.0
|
120 |
+
return torch.reshape(pts, (5, 2))
|
121 |
+
|
122 |
+
|
123 |
+
def get_face_align_matrix(
|
124 |
+
face_pts: torch.Tensor, target_shape: Tuple[int, int],
|
125 |
+
target_face_scale: float = 1.0, offset_xy: Optional[Tuple[float, float]] = None,
|
126 |
+
target_pts: Optional[torch.Tensor] = None):
|
127 |
+
|
128 |
+
if target_pts is None:
|
129 |
+
with torch.no_grad():
|
130 |
+
std_pts = _standard_face_pts().to(face_pts) # [-1 1]
|
131 |
+
h, w, *_ = target_shape
|
132 |
+
target_pts = (std_pts * target_face_scale + 1) * \
|
133 |
+
torch.tensor([w-1, h-1]).to(face_pts) / 2.0
|
134 |
+
if offset_xy is not None:
|
135 |
+
target_pts[:, 0] += offset_xy[0]
|
136 |
+
target_pts[:, 1] += offset_xy[1]
|
137 |
+
else:
|
138 |
+
target_pts = target_pts.to(face_pts)
|
139 |
+
|
140 |
+
if target_pts.dim() == 2:
|
141 |
+
target_pts = target_pts.unsqueeze(0)
|
142 |
+
if target_pts.size(0) == 1:
|
143 |
+
target_pts = target_pts.broadcast_to(face_pts.shape)
|
144 |
+
|
145 |
+
assert target_pts.shape == face_pts.shape
|
146 |
+
|
147 |
+
return get_similarity_transform_matrix(face_pts, target_pts)
|
148 |
+
|
149 |
+
|
150 |
+
def rot90(v):
|
151 |
+
return np.array([-v[1], v[0]])
|
152 |
+
|
153 |
+
|
154 |
+
def get_quad(lm: torch.Tensor):
|
155 |
+
# N,2
|
156 |
+
lm = lm.detach().cpu().numpy()
|
157 |
+
# Choose oriented crop rectangle.
|
158 |
+
eye_avg = (lm[0] + lm[1]) * 0.5 + 0.5
|
159 |
+
mouth_avg = (lm[3] + lm[4]) * 0.5 + 0.5
|
160 |
+
eye_to_eye = lm[1] - lm[0]
|
161 |
+
eye_to_mouth = mouth_avg - eye_avg
|
162 |
+
x = eye_to_eye - rot90(eye_to_mouth)
|
163 |
+
x /= np.hypot(*x)
|
164 |
+
x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8)
|
165 |
+
y = rot90(x)
|
166 |
+
c = eye_avg + eye_to_mouth * 0.1
|
167 |
+
quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
|
168 |
+
quad_for_coeffs = quad[[0,3, 2,1]] # 顺序改一下
|
169 |
+
return torch.from_numpy(quad_for_coeffs).float()
|
170 |
+
|
171 |
+
|
172 |
+
def get_face_align_matrix_celebm(
|
173 |
+
face_pts: torch.Tensor, target_shape: Tuple[int, int], bbox_scale_factor: float = 1.0):
|
174 |
+
|
175 |
+
face_pts = torch.stack([get_quad(pts) for pts in face_pts], dim=0).to(face_pts)
|
176 |
+
face_mean = face_pts.mean(axis=1).unsqueeze(1)
|
177 |
+
diff = face_pts - face_mean
|
178 |
+
face_pts = face_mean + torch.tensor([[[1.5, 1.5]]], device=diff.device)*diff
|
179 |
+
assert target_shape[0] == target_shape[1]
|
180 |
+
diagonal = torch.norm(face_pts[:, 0, :] - face_pts[:, 2, :], dim=-1)
|
181 |
+
min_bbox_size = 350
|
182 |
+
max_bbox_size = 500
|
183 |
+
bbox_scale_factor = bbox_scale_factor + torch.clamp((max_bbox_size-diagonal)/(max_bbox_size-min_bbox_size), 0, 1)
|
184 |
+
print(bbox_scale_factor)
|
185 |
+
target_size = target_shape[0]/bbox_scale_factor
|
186 |
+
#target_pts = torch.as_tensor([[0, 0], [target_size,0], [target_size, target_size], [0, target_size]]).to(face_pts)
|
187 |
+
target_ptss = []
|
188 |
+
for tidx in range(target_size.shape[0]):
|
189 |
+
target_pts = torch.as_tensor([[0, 0], [target_size[tidx],0], [target_size[tidx], target_size[tidx]], [0, target_size[tidx]]]).to(face_pts)
|
190 |
+
target_pts += int( (target_shape[0]-target_size[tidx])/2 )
|
191 |
+
target_ptss.append(target_pts)
|
192 |
+
target_pts = torch.stack(target_ptss, dim=0)
|
193 |
+
|
194 |
+
#if target_pts.dim() == 2:
|
195 |
+
# target_pts = target_pts.unsqueeze(0)
|
196 |
+
#if target_pts.size(0) == 1:
|
197 |
+
# target_pts = target_pts.broadcast_to(face_pts.shape)
|
198 |
+
|
199 |
+
assert target_pts.shape == face_pts.shape
|
200 |
+
|
201 |
+
return get_similarity_transform_matrix(face_pts, target_pts)
|
202 |
+
|
203 |
+
@functools.lru_cache(maxsize=128)
|
204 |
+
def _meshgrid(h, w) -> Tuple[torch.Tensor, torch.Tensor]:
|
205 |
+
yy, xx = torch.meshgrid(torch.arange(h).float(),
|
206 |
+
torch.arange(w).float(),
|
207 |
+
indexing='ij')
|
208 |
+
return yy, xx
|
209 |
+
|
210 |
+
|
211 |
+
def _forge_grid(batch_size: int, device: torch.device,
|
212 |
+
output_shape: Tuple[int, int],
|
213 |
+
fn: Callable[[torch.Tensor], torch.Tensor]
|
214 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
215 |
+
""" Forge transform maps with a given function `fn`.
|
216 |
+
|
217 |
+
Args:
|
218 |
+
output_shape (tuple): (b, h, w, ...).
|
219 |
+
fn (Callable[[torch.Tensor], torch.Tensor]): The function that accepts
|
220 |
+
a bxnx2 array and outputs the transformed bxnx2 array. Both input
|
221 |
+
and output store (x, y) coordinates.
|
222 |
+
|
223 |
+
Note:
|
224 |
+
both input and output arrays of `fn` should store (y, x) coordinates.
|
225 |
+
|
226 |
+
Returns:
|
227 |
+
Tuple[torch.Tensor, torch.Tensor]: Two maps `X` and `Y`, where for each
|
228 |
+
pixel (y, x) or coordinate (x, y),
|
229 |
+
`(X[y, x], Y[y, x]) = fn([x, y])`
|
230 |
+
"""
|
231 |
+
h, w, *_ = output_shape
|
232 |
+
yy, xx = _meshgrid(h, w) # h x w
|
233 |
+
yy = yy.unsqueeze(0).broadcast_to(batch_size, h, w).to(device)
|
234 |
+
xx = xx.unsqueeze(0).broadcast_to(batch_size, h, w).to(device)
|
235 |
+
|
236 |
+
in_xxyy = torch.stack(
|
237 |
+
[xx, yy], dim=-1).reshape([batch_size, h*w, 2]) # (h x w) x 2
|
238 |
+
out_xxyy: torch.Tensor = fn(in_xxyy) # (h x w) x 2
|
239 |
+
return out_xxyy.reshape(batch_size, h, w, 2)
|
240 |
+
|
241 |
+
|
242 |
+
def _safe_arctanh(x: torch.Tensor, eps: float = 0.001) -> torch.Tensor:
|
243 |
+
return torch.clamp(x, -1+eps, 1-eps).arctanh()
|
244 |
+
|
245 |
+
|
246 |
+
def inverted_tanh_warp_transform(coords: torch.Tensor, matrix: torch.Tensor,
|
247 |
+
warp_factor: float, warped_shape: Tuple[int, int]):
|
248 |
+
""" Inverted tanh-warp function.
|
249 |
+
|
250 |
+
Args:
|
251 |
+
coords (torch.Tensor): b x n x 2 (x, y). The transformed coordinates.
|
252 |
+
matrix: b x 3 x 3. A matrix that transforms un-normalized coordinates
|
253 |
+
from the original image to the aligned yet not-warped image.
|
254 |
+
warp_factor (float): The warp factor.
|
255 |
+
0 means linear transform, 1 means full tanh warp.
|
256 |
+
warped_shape (tuple): [height, width].
|
257 |
+
|
258 |
+
Returns:
|
259 |
+
torch.Tensor: b x n x 2 (x, y). The original coordinates.
|
260 |
+
"""
|
261 |
+
h, w, *_ = warped_shape
|
262 |
+
# h -= 1
|
263 |
+
# w -= 1
|
264 |
+
|
265 |
+
w_h = torch.tensor([[w, h]]).to(coords)
|
266 |
+
|
267 |
+
if warp_factor > 0:
|
268 |
+
# normalize coordinates to [-1, +1]
|
269 |
+
coords = coords / w_h * 2 - 1
|
270 |
+
|
271 |
+
nl_part1 = coords > 1.0 - warp_factor
|
272 |
+
nl_part2 = coords < -1.0 + warp_factor
|
273 |
+
|
274 |
+
ret_nl_part1 = _safe_arctanh(
|
275 |
+
(coords - 1.0 + warp_factor) /
|
276 |
+
warp_factor) * warp_factor + \
|
277 |
+
1.0 - warp_factor
|
278 |
+
ret_nl_part2 = _safe_arctanh(
|
279 |
+
(coords + 1.0 - warp_factor) /
|
280 |
+
warp_factor) * warp_factor - \
|
281 |
+
1.0 + warp_factor
|
282 |
+
|
283 |
+
coords = torch.where(nl_part1, ret_nl_part1,
|
284 |
+
torch.where(nl_part2, ret_nl_part2, coords))
|
285 |
+
|
286 |
+
# denormalize
|
287 |
+
coords = (coords + 1) / 2 * w_h
|
288 |
+
|
289 |
+
coords_homo = torch.cat(
|
290 |
+
[coords, torch.ones_like(coords[:, :, [0]])], dim=-1) # b x n x 3
|
291 |
+
|
292 |
+
inv_matrix = torch.linalg.inv(matrix) # b x 3 x 3
|
293 |
+
# inv_matrix = np.linalg.inv(matrix)
|
294 |
+
coords_homo = torch.bmm(
|
295 |
+
coords_homo, inv_matrix.permute(0, 2, 1)) # b x n x 3
|
296 |
+
return coords_homo[:, :, :2] / coords_homo[:, :, [2, 2]]
|
297 |
+
|
298 |
+
|
299 |
+
def tanh_warp_transform(
|
300 |
+
coords: torch.Tensor, matrix: torch.Tensor,
|
301 |
+
warp_factor: float, warped_shape: Tuple[int, int]):
|
302 |
+
""" Tanh-warp function.
|
303 |
+
|
304 |
+
Args:
|
305 |
+
coords (torch.Tensor): b x n x 2 (x, y). The original coordinates.
|
306 |
+
matrix: b x 3 x 3. A matrix that transforms un-normalized coordinates
|
307 |
+
from the original image to the aligned yet not-warped image.
|
308 |
+
warp_factor (float): The warp factor.
|
309 |
+
0 means linear transform, 1 means full tanh warp.
|
310 |
+
warped_shape (tuple): [height, width].
|
311 |
+
|
312 |
+
Returns:
|
313 |
+
torch.Tensor: b x n x 2 (x, y). The transformed coordinates.
|
314 |
+
"""
|
315 |
+
h, w, *_ = warped_shape
|
316 |
+
# h -= 1
|
317 |
+
# w -= 1
|
318 |
+
w_h = torch.tensor([[w, h]]).to(coords)
|
319 |
+
|
320 |
+
coords_homo = torch.cat(
|
321 |
+
[coords, torch.ones_like(coords[:, :, [0]])], dim=-1) # b x n x 3
|
322 |
+
|
323 |
+
coords_homo = torch.bmm(coords_homo, matrix.transpose(2, 1)) # b x n x 3
|
324 |
+
coords = (coords_homo[:, :, :2] / coords_homo[:, :, [2, 2]]) # b x n x 2
|
325 |
+
|
326 |
+
if warp_factor > 0:
|
327 |
+
# normalize coordinates to [-1, +1]
|
328 |
+
coords = coords / w_h * 2 - 1
|
329 |
+
|
330 |
+
nl_part1 = coords > 1.0 - warp_factor
|
331 |
+
nl_part2 = coords < -1.0 + warp_factor
|
332 |
+
|
333 |
+
ret_nl_part1 = torch.tanh(
|
334 |
+
(coords - 1.0 + warp_factor) /
|
335 |
+
warp_factor) * warp_factor + \
|
336 |
+
1.0 - warp_factor
|
337 |
+
ret_nl_part2 = torch.tanh(
|
338 |
+
(coords + 1.0 - warp_factor) /
|
339 |
+
warp_factor) * warp_factor - \
|
340 |
+
1.0 + warp_factor
|
341 |
+
|
342 |
+
coords = torch.where(nl_part1, ret_nl_part1,
|
343 |
+
torch.where(nl_part2, ret_nl_part2, coords))
|
344 |
+
|
345 |
+
# denormalize
|
346 |
+
coords = (coords + 1) / 2 * w_h
|
347 |
+
|
348 |
+
return coords
|
349 |
+
|
350 |
+
|
351 |
+
def make_tanh_warp_grid(matrix: torch.Tensor, warp_factor: float,
|
352 |
+
warped_shape: Tuple[int, int],
|
353 |
+
orig_shape: Tuple[int, int]):
|
354 |
+
"""
|
355 |
+
Args:
|
356 |
+
matrix: bx3x3 matrix.
|
357 |
+
warp_factor: The warping factor. `warp_factor=1.0` represents a vannila Tanh-warping,
|
358 |
+
`warp_factor=0.0` represents a cropping.
|
359 |
+
warped_shape: The target image shape to transform to.
|
360 |
+
|
361 |
+
Returns:
|
362 |
+
torch.Tensor: b x h x w x 2 (x, y).
|
363 |
+
"""
|
364 |
+
orig_h, orig_w, *_ = orig_shape
|
365 |
+
w_h = torch.tensor([orig_w, orig_h]).to(matrix).reshape(1, 1, 1, 2)
|
366 |
+
return _forge_grid(
|
367 |
+
matrix.size(0), matrix.device,
|
368 |
+
warped_shape,
|
369 |
+
functools.partial(inverted_tanh_warp_transform,
|
370 |
+
matrix=matrix,
|
371 |
+
warp_factor=warp_factor,
|
372 |
+
warped_shape=warped_shape)) / w_h*2-1
|
373 |
+
|
374 |
+
|
375 |
+
def make_inverted_tanh_warp_grid(matrix: torch.Tensor, warp_factor: float,
|
376 |
+
warped_shape: Tuple[int, int],
|
377 |
+
orig_shape: Tuple[int, int]):
|
378 |
+
"""
|
379 |
+
Args:
|
380 |
+
matrix: bx3x3 matrix.
|
381 |
+
warp_factor: The warping factor. `warp_factor=1.0` represents a vannila Tanh-warping,
|
382 |
+
`warp_factor=0.0` represents a cropping.
|
383 |
+
warped_shape: The target image shape to transform to.
|
384 |
+
orig_shape: The original image shape that is transformed from.
|
385 |
+
|
386 |
+
Returns:
|
387 |
+
torch.Tensor: b x h x w x 2 (x, y).
|
388 |
+
"""
|
389 |
+
h, w, *_ = warped_shape
|
390 |
+
w_h = torch.tensor([w, h]).to(matrix).reshape(1, 1, 1, 2)
|
391 |
+
return _forge_grid(
|
392 |
+
matrix.size(0), matrix.device,
|
393 |
+
orig_shape,
|
394 |
+
functools.partial(tanh_warp_transform,
|
395 |
+
matrix=matrix,
|
396 |
+
warp_factor=warp_factor,
|
397 |
+
warped_shape=warped_shape)) / w_h * 2-1
|