alexnasa commited on
Commit
970f13d
·
1 Parent(s): 151e5f8

pre-trained models adjusted

Browse files
src/pixel3dmm/env_paths.py CHANGED
@@ -1,7 +1,7 @@
1
  import json
2
  from pathlib import Path
3
  from environs import Env
4
- from huggingface_hub import hf_hub_download
5
 
6
  env = Env(expand_vars=True)
7
  env_file_path = Path(f"{Path.home()}/.config/pixel3dmm/.env")
@@ -14,36 +14,18 @@ with env.prefixed("PIXEL3DMM_"):
14
  PREPROCESSED_DATA = env("PREPROCESSED_DATA")
15
  TRACKING_OUTPUT = env("TRACKING_OUTPUT")
16
 
17
- FLAME_ASSETS = hf_hub_download(
18
- repo_id="alexnasa/pixel3dmm",
19
- filename="generic_model.pkl",
20
- repo_type="model",
21
  )
22
 
23
- MICA_TAR_ASSET = hf_hub_download(
24
- repo_id="alexnasa/pixel3dmm",
25
- filename="mica.tar",
26
- repo_type="model",
27
- )
28
-
29
-
30
- PIPNET_LOCAL_ASSET = hf_hub_download(
31
- repo_id="alexnasa/pixel3dmm",
32
- filename="epoch59.pth",
33
- repo_type="model",
34
- )
35
-
36
- CKPT_N_PRED = hf_hub_download(
37
- repo_id="alexnasa/pixel3dmm",
38
- filename="normals.ckpt",
39
- repo_type="model",
40
- )
41
-
42
- CKPT_UV_PRED = hf_hub_download(
43
- repo_id="alexnasa/pixel3dmm",
44
- filename="uv.ckpt",
45
- repo_type="model",
46
- )
47
 
48
  head_template = f'{CODE_BASE}/assets/head_template.obj'
49
  head_template_color = f'{CODE_BASE}/assets/head_template_color.obj'
 
1
  import json
2
  from pathlib import Path
3
  from environs import Env
4
+ from huggingface_hub import hf_hub_download, snapshot_download
5
 
6
  env = Env(expand_vars=True)
7
  env_file_path = Path(f"{Path.home()}/.config/pixel3dmm/.env")
 
14
  PREPROCESSED_DATA = env("PREPROCESSED_DATA")
15
  TRACKING_OUTPUT = env("TRACKING_OUTPUT")
16
 
17
+ base = snapshot_download(
18
+ repo_id="alexnasa/pixel3dmm", # your model repo
19
+ repo_type="model", # model vs dataset
 
20
  )
21
 
22
+ FLAME_ASSET = os.path.join(base, "generic_model.pkl")
23
+ MICA_TAR_ASSET = os.path.join(base, "mica.tar")
24
+ PIPNET_LOCAL_ASSET= os.path.join(base, "epoch59.pth")
25
+ CKPT_N_PRED = os.path.join(base, "normals.ckpt")
26
+ CKPT_UV_PRED = os.path.join(base, "uv.ckpt")
27
+ ANT_DIR = os.path.join(base_dir, "antelopev2")
28
+ BUFFALO_DIR = os.path.join(base_dir, "buffalo_l")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
 
30
  head_template = f'{CODE_BASE}/assets/head_template.obj'
31
  head_template_color = f'{CODE_BASE}/assets/head_template_color.obj'
src/pixel3dmm/preprocessing/MICA/datasets/creation/generator.py CHANGED
@@ -24,6 +24,7 @@ from typing import List
24
  import cv2
25
  import numpy as np
26
  from insightface.app import FaceAnalysis
 
27
  from insightface.app.common import Face
28
  from insightface.utils import face_align
29
  from loguru import logger
@@ -66,7 +67,9 @@ class Generator:
66
  instance.preprocess()
67
 
68
  def arcface(self):
69
- app = FaceAnalysis(name='antelopev2', providers=['CUDAExecutionProvider'])
 
 
70
  app.prepare(ctx_id=0, det_size=(224, 224))
71
 
72
  logger.info('Start arcface...')
 
24
  import cv2
25
  import numpy as np
26
  from insightface.app import FaceAnalysis
27
+ from pixel3dmm import env_paths
28
  from insightface.app.common import Face
29
  from insightface.utils import face_align
30
  from loguru import logger
 
67
  instance.preprocess()
68
 
69
  def arcface(self):
70
+ app = FaceAnalysis(name='antelopev2',
71
+ root=f'{env_paths.ANT_DIR}',
72
+ providers=['CUDAExecutionProvider'])
73
  app.prepare(ctx_id=0, det_size=(224, 224))
74
 
75
  logger.info('Start arcface...')
src/pixel3dmm/preprocessing/MICA/micalib/tester.py CHANGED
@@ -23,6 +23,8 @@ import numpy as np
23
  import torch
24
  import torch.distributed as dist
25
  from insightface.app import FaceAnalysis
 
 
26
  from insightface.app.common import Face
27
  from insightface.utils import face_align
28
  from loguru import logger
@@ -183,7 +185,9 @@ class Tester(object):
183
  else:
184
  cache = {}
185
 
186
- app = FaceAnalysis(name='antelopev2', providers=['CUDAExecutionProvider'])
 
 
187
  app.prepare(ctx_id=0, det_size=(224, 224), det_thresh=0.4)
188
 
189
  for actor in tqdm(sorted(os.listdir(NOW_PICTURES))):
@@ -202,7 +206,9 @@ class Tester(object):
202
  else:
203
  cache = {}
204
 
205
- app = FaceAnalysis(name='antelopev2', providers=['CUDAExecutionProvider'])
 
 
206
  app.prepare(ctx_id=0, det_size=(224, 224), det_thresh=0.1)
207
 
208
  cache['HQ'] = {}
 
23
  import torch
24
  import torch.distributed as dist
25
  from insightface.app import FaceAnalysis
26
+ from pixel3dmm import env_paths
27
+
28
  from insightface.app.common import Face
29
  from insightface.utils import face_align
30
  from loguru import logger
 
185
  else:
186
  cache = {}
187
 
188
+ app = FaceAnalysis(name='antelopev2',
189
+ root=f'{env_paths.ANT_DIR}',
190
+ providers=['CUDAExecutionProvider'])
191
  app.prepare(ctx_id=0, det_size=(224, 224), det_thresh=0.4)
192
 
193
  for actor in tqdm(sorted(os.listdir(NOW_PICTURES))):
 
206
  else:
207
  cache = {}
208
 
209
+ app = FaceAnalysis(name='antelopev2',
210
+ root=f'{env_paths.ANT_DIR}',
211
+ providers=['CUDAExecutionProvider'])
212
  app.prepare(ctx_id=0, det_size=(224, 224), det_thresh=0.1)
213
 
214
  cache['HQ'] = {}
src/pixel3dmm/preprocessing/MICA/utils/landmark_detector.py CHANGED
@@ -17,6 +17,7 @@
17
  import face_alignment
18
  import numpy as np
19
  from insightface.app import FaceAnalysis
 
20
  from loguru import logger
21
 
22
  from datasets.creation.util import get_bbox
@@ -36,7 +37,9 @@ class LandmarksDetector:
36
  model = model.upper()
37
  self.predictor = model
38
  if model == detectors.RETINAFACE:
39
- self._face_detector = FaceAnalysis(name='antelopev2', providers=['CUDAExecutionProvider'])
 
 
40
  self._face_detector.prepare(ctx_id=0, det_size=(224, 224))
41
  elif model == detectors.FAN:
42
  self._face_detector = face_alignment.FaceAlignment(face_alignment.LandmarksType._2D, device=device)
 
17
  import face_alignment
18
  import numpy as np
19
  from insightface.app import FaceAnalysis
20
+ from pixel3dmm import env_paths
21
  from loguru import logger
22
 
23
  from datasets.creation.util import get_bbox
 
37
  model = model.upper()
38
  self.predictor = model
39
  if model == detectors.RETINAFACE:
40
+ self._face_detector = FaceAnalysis(name='antelopev2',
41
+ root=f'{env_paths.ANT_DIR}',
42
+ providers=['CUDAExecutionProvider'])
43
  self._face_detector.prepare(ctx_id=0, det_size=(224, 224))
44
  elif model == detectors.FAN:
45
  self._face_detector = face_alignment.FaceAlignment(face_alignment.LandmarksType._2D, device=device)