Spaces:
Running
on
Zero
Running
on
Zero
pre-trained models adjusted
Browse files
src/pixel3dmm/env_paths.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import json
|
2 |
from pathlib import Path
|
3 |
from environs import Env
|
4 |
-
from huggingface_hub import hf_hub_download
|
5 |
|
6 |
env = Env(expand_vars=True)
|
7 |
env_file_path = Path(f"{Path.home()}/.config/pixel3dmm/.env")
|
@@ -14,36 +14,18 @@ with env.prefixed("PIXEL3DMM_"):
|
|
14 |
PREPROCESSED_DATA = env("PREPROCESSED_DATA")
|
15 |
TRACKING_OUTPUT = env("TRACKING_OUTPUT")
|
16 |
|
17 |
-
|
18 |
-
repo_id="alexnasa/pixel3dmm",
|
19 |
-
|
20 |
-
repo_type="model",
|
21 |
)
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
PIPNET_LOCAL_ASSET = hf_hub_download(
|
31 |
-
repo_id="alexnasa/pixel3dmm",
|
32 |
-
filename="epoch59.pth",
|
33 |
-
repo_type="model",
|
34 |
-
)
|
35 |
-
|
36 |
-
CKPT_N_PRED = hf_hub_download(
|
37 |
-
repo_id="alexnasa/pixel3dmm",
|
38 |
-
filename="normals.ckpt",
|
39 |
-
repo_type="model",
|
40 |
-
)
|
41 |
-
|
42 |
-
CKPT_UV_PRED = hf_hub_download(
|
43 |
-
repo_id="alexnasa/pixel3dmm",
|
44 |
-
filename="uv.ckpt",
|
45 |
-
repo_type="model",
|
46 |
-
)
|
47 |
|
48 |
head_template = f'{CODE_BASE}/assets/head_template.obj'
|
49 |
head_template_color = f'{CODE_BASE}/assets/head_template_color.obj'
|
|
|
1 |
import json
|
2 |
from pathlib import Path
|
3 |
from environs import Env
|
4 |
+
from huggingface_hub import hf_hub_download, snapshot_download
|
5 |
|
6 |
env = Env(expand_vars=True)
|
7 |
env_file_path = Path(f"{Path.home()}/.config/pixel3dmm/.env")
|
|
|
14 |
PREPROCESSED_DATA = env("PREPROCESSED_DATA")
|
15 |
TRACKING_OUTPUT = env("TRACKING_OUTPUT")
|
16 |
|
17 |
+
base = snapshot_download(
|
18 |
+
repo_id="alexnasa/pixel3dmm", # your model repo
|
19 |
+
repo_type="model", # model vs dataset
|
|
|
20 |
)
|
21 |
|
22 |
+
FLAME_ASSET = os.path.join(base, "generic_model.pkl")
|
23 |
+
MICA_TAR_ASSET = os.path.join(base, "mica.tar")
|
24 |
+
PIPNET_LOCAL_ASSET= os.path.join(base, "epoch59.pth")
|
25 |
+
CKPT_N_PRED = os.path.join(base, "normals.ckpt")
|
26 |
+
CKPT_UV_PRED = os.path.join(base, "uv.ckpt")
|
27 |
+
ANT_DIR = os.path.join(base_dir, "antelopev2")
|
28 |
+
BUFFALO_DIR = os.path.join(base_dir, "buffalo_l")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
head_template = f'{CODE_BASE}/assets/head_template.obj'
|
31 |
head_template_color = f'{CODE_BASE}/assets/head_template_color.obj'
|
src/pixel3dmm/preprocessing/MICA/datasets/creation/generator.py
CHANGED
@@ -24,6 +24,7 @@ from typing import List
|
|
24 |
import cv2
|
25 |
import numpy as np
|
26 |
from insightface.app import FaceAnalysis
|
|
|
27 |
from insightface.app.common import Face
|
28 |
from insightface.utils import face_align
|
29 |
from loguru import logger
|
@@ -66,7 +67,9 @@ class Generator:
|
|
66 |
instance.preprocess()
|
67 |
|
68 |
def arcface(self):
|
69 |
-
app = FaceAnalysis(name='antelopev2',
|
|
|
|
|
70 |
app.prepare(ctx_id=0, det_size=(224, 224))
|
71 |
|
72 |
logger.info('Start arcface...')
|
|
|
24 |
import cv2
|
25 |
import numpy as np
|
26 |
from insightface.app import FaceAnalysis
|
27 |
+
from pixel3dmm import env_paths
|
28 |
from insightface.app.common import Face
|
29 |
from insightface.utils import face_align
|
30 |
from loguru import logger
|
|
|
67 |
instance.preprocess()
|
68 |
|
69 |
def arcface(self):
|
70 |
+
app = FaceAnalysis(name='antelopev2',
|
71 |
+
root=f'{env_paths.ANT_DIR}',
|
72 |
+
providers=['CUDAExecutionProvider'])
|
73 |
app.prepare(ctx_id=0, det_size=(224, 224))
|
74 |
|
75 |
logger.info('Start arcface...')
|
src/pixel3dmm/preprocessing/MICA/micalib/tester.py
CHANGED
@@ -23,6 +23,8 @@ import numpy as np
|
|
23 |
import torch
|
24 |
import torch.distributed as dist
|
25 |
from insightface.app import FaceAnalysis
|
|
|
|
|
26 |
from insightface.app.common import Face
|
27 |
from insightface.utils import face_align
|
28 |
from loguru import logger
|
@@ -183,7 +185,9 @@ class Tester(object):
|
|
183 |
else:
|
184 |
cache = {}
|
185 |
|
186 |
-
app = FaceAnalysis(name='antelopev2',
|
|
|
|
|
187 |
app.prepare(ctx_id=0, det_size=(224, 224), det_thresh=0.4)
|
188 |
|
189 |
for actor in tqdm(sorted(os.listdir(NOW_PICTURES))):
|
@@ -202,7 +206,9 @@ class Tester(object):
|
|
202 |
else:
|
203 |
cache = {}
|
204 |
|
205 |
-
app = FaceAnalysis(name='antelopev2',
|
|
|
|
|
206 |
app.prepare(ctx_id=0, det_size=(224, 224), det_thresh=0.1)
|
207 |
|
208 |
cache['HQ'] = {}
|
|
|
23 |
import torch
|
24 |
import torch.distributed as dist
|
25 |
from insightface.app import FaceAnalysis
|
26 |
+
from pixel3dmm import env_paths
|
27 |
+
|
28 |
from insightface.app.common import Face
|
29 |
from insightface.utils import face_align
|
30 |
from loguru import logger
|
|
|
185 |
else:
|
186 |
cache = {}
|
187 |
|
188 |
+
app = FaceAnalysis(name='antelopev2',
|
189 |
+
root=f'{env_paths.ANT_DIR}',
|
190 |
+
providers=['CUDAExecutionProvider'])
|
191 |
app.prepare(ctx_id=0, det_size=(224, 224), det_thresh=0.4)
|
192 |
|
193 |
for actor in tqdm(sorted(os.listdir(NOW_PICTURES))):
|
|
|
206 |
else:
|
207 |
cache = {}
|
208 |
|
209 |
+
app = FaceAnalysis(name='antelopev2',
|
210 |
+
root=f'{env_paths.ANT_DIR}',
|
211 |
+
providers=['CUDAExecutionProvider'])
|
212 |
app.prepare(ctx_id=0, det_size=(224, 224), det_thresh=0.1)
|
213 |
|
214 |
cache['HQ'] = {}
|
src/pixel3dmm/preprocessing/MICA/utils/landmark_detector.py
CHANGED
@@ -17,6 +17,7 @@
|
|
17 |
import face_alignment
|
18 |
import numpy as np
|
19 |
from insightface.app import FaceAnalysis
|
|
|
20 |
from loguru import logger
|
21 |
|
22 |
from datasets.creation.util import get_bbox
|
@@ -36,7 +37,9 @@ class LandmarksDetector:
|
|
36 |
model = model.upper()
|
37 |
self.predictor = model
|
38 |
if model == detectors.RETINAFACE:
|
39 |
-
self._face_detector = FaceAnalysis(name='antelopev2',
|
|
|
|
|
40 |
self._face_detector.prepare(ctx_id=0, det_size=(224, 224))
|
41 |
elif model == detectors.FAN:
|
42 |
self._face_detector = face_alignment.FaceAlignment(face_alignment.LandmarksType._2D, device=device)
|
|
|
17 |
import face_alignment
|
18 |
import numpy as np
|
19 |
from insightface.app import FaceAnalysis
|
20 |
+
from pixel3dmm import env_paths
|
21 |
from loguru import logger
|
22 |
|
23 |
from datasets.creation.util import get_bbox
|
|
|
37 |
model = model.upper()
|
38 |
self.predictor = model
|
39 |
if model == detectors.RETINAFACE:
|
40 |
+
self._face_detector = FaceAnalysis(name='antelopev2',
|
41 |
+
root=f'{env_paths.ANT_DIR}',
|
42 |
+
providers=['CUDAExecutionProvider'])
|
43 |
self._face_detector.prepare(ctx_id=0, det_size=(224, 224))
|
44 |
elif model == detectors.FAN:
|
45 |
self._face_detector = face_alignment.FaceAlignment(face_alignment.LandmarksType._2D, device=device)
|