alexnasa commited on
Commit
dd57a02
·
verified ·
1 Parent(s): 6086b37

Delete src/pixel3dmm/preprocessing/MICA/micalib/models/mica.py

Browse files
src/pixel3dmm/preprocessing/MICA/micalib/models/mica.py DELETED
@@ -1,120 +0,0 @@
1
- # -*- coding: utf-8 -*-
2
-
3
- # Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
4
- # holder of all proprietary rights on this computer program.
5
- # You can only use this computer program if you have closed
6
- # a license agreement with MPG or you get the right to use the computer
7
- # program from someone who is authorized to grant you that right.
8
- # Any use of the computer program without a valid license is prohibited and
9
- # liable to prosecution.
10
- #
11
- # Copyright©2023 Max-Planck-Gesellschaft zur Förderung
12
- # der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
13
- # for Intelligent Systems. All rights reserved.
14
- #
15
- # Contact: [email protected]
16
-
17
-
18
- import os
19
- import sys
20
-
21
- sys.path.append("./nfclib")
22
-
23
- import torch
24
- import torch.nn.functional as F
25
-
26
- from models.arcface import Arcface
27
- from models.generator import Generator
28
- from micalib.base_model import BaseModel
29
-
30
- from loguru import logger
31
-
32
-
33
- class MICA(BaseModel):
34
- def __init__(self, config=None, device=None, tag='MICA'):
35
- super(MICA, self).__init__(config, device, tag)
36
-
37
- self.initialize()
38
-
39
- def create_model(self, model_cfg):
40
- mapping_layers = model_cfg.mapping_layers
41
- pretrained_path = None
42
- if not model_cfg.use_pretrained:
43
- pretrained_path = model_cfg.arcface_pretrained_model
44
- self.arcface = Arcface(pretrained_path=pretrained_path).to(self.device)
45
- self.flameModel = Generator(512, 300, self.cfg.model.n_shape, mapping_layers, model_cfg, self.device)
46
-
47
- def load_model(self):
48
- model_path = os.path.join(self.cfg.output_dir, 'model.tar')
49
- if os.path.exists(self.cfg.pretrained_model_path) and self.cfg.model.use_pretrained:
50
- model_path = self.cfg.pretrained_model_path
51
- if os.path.exists(model_path):
52
- logger.info(f'[{self.tag}] Trained model found. Path: {model_path} | GPU: {self.device}')
53
- checkpoint = torch.load(model_path)
54
- if 'arcface' in checkpoint:
55
- self.arcface.load_state_dict(checkpoint['arcface'])
56
- if 'flameModel' in checkpoint:
57
- self.flameModel.load_state_dict(checkpoint['flameModel'])
58
- else:
59
- logger.info(f'[{self.tag}] Checkpoint not available starting from scratch!')
60
-
61
- def model_dict(self):
62
- return {
63
- 'flameModel': self.flameModel.state_dict(),
64
- 'arcface': self.arcface.state_dict()
65
- }
66
-
67
- def parameters_to_optimize(self):
68
- return [
69
- {'params': self.flameModel.parameters(), 'lr': self.cfg.train.lr},
70
- {'params': self.arcface.parameters(), 'lr': self.cfg.train.arcface_lr},
71
- ]
72
-
73
- def encode(self, images, arcface_imgs):
74
- codedict = {}
75
-
76
- codedict['arcface'] = F.normalize(self.arcface(arcface_imgs))
77
- codedict['images'] = images
78
-
79
- return codedict
80
-
81
- def decode(self, codedict, epoch=0):
82
- self.epoch = epoch
83
-
84
- flame_verts_shape = None
85
- shapecode = None
86
-
87
- if not self.testing:
88
- flame = codedict['flame']
89
- shapecode = flame['shape_params'].view(-1, flame['shape_params'].shape[2])
90
- shapecode = shapecode.to(self.device)[:, :self.cfg.model.n_shape]
91
- with torch.no_grad():
92
- flame_verts_shape, _, _ = self.flame(shape_params=shapecode)
93
-
94
- identity_code = codedict['arcface']
95
- pred_canonical_vertices, pred_shape_code = self.flameModel(identity_code)
96
-
97
- output = {
98
- 'flame_verts_shape': flame_verts_shape,
99
- 'flame_shape_code': shapecode,
100
- 'pred_canonical_shape_vertices': pred_canonical_vertices,
101
- 'pred_shape_code': pred_shape_code,
102
- 'faceid': codedict['arcface']
103
- }
104
-
105
- return output
106
-
107
- def compute_losses(self, input, encoder_output, decoder_output):
108
- losses = {}
109
-
110
- pred_verts = decoder_output['pred_canonical_shape_vertices']
111
- gt_verts = decoder_output['flame_verts_shape'].detach()
112
-
113
- pred_verts_shape_canonical_diff = (pred_verts - gt_verts).abs()
114
-
115
- if self.use_mask:
116
- pred_verts_shape_canonical_diff *= self.vertices_mask
117
-
118
- losses['pred_verts_shape_canonical_diff'] = torch.mean(pred_verts_shape_canonical_diff) * 1000.0
119
-
120
- return losses