Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -8,13 +8,14 @@ import shutil
|
|
8 |
import time
|
9 |
import gradio as gr
|
10 |
import sys
|
11 |
-
|
12 |
|
13 |
# Set environment variables
|
14 |
os.environ["PIXEL3DMM_CODE_BASE"] = f"{os.getcwd()}"
|
15 |
os.environ["PIXEL3DMM_PREPROCESSED_DATA"] = f"{os.getcwd()}/proprocess_results"
|
16 |
os.environ["PIXEL3DMM_TRACKING_OUTPUT"] = f"{os.getcwd()}/tracking_results"
|
17 |
|
|
|
18 |
def sh(cmd): subprocess.check_call(cmd, shell=True)
|
19 |
|
20 |
# only do this once per VM restart
|
@@ -44,224 +45,149 @@ def install_cuda_toolkit():
|
|
44 |
install_cuda_toolkit()
|
45 |
|
46 |
|
47 |
-
# Utility to
|
48 |
-
def
|
49 |
-
|
50 |
-
|
51 |
-
|
|
|
52 |
if not files:
|
53 |
return None
|
54 |
-
|
55 |
-
pattern = os.path.join(frames_dir, f"%05d.{ext}")
|
56 |
-
subprocess.run([
|
57 |
-
"ffmpeg", "-y", "-i", pattern,
|
58 |
-
"-r", str(fps), out_path
|
59 |
-
], check=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
|
60 |
-
return out_path
|
61 |
-
|
62 |
-
# Function to probe video for duration and frame rate
|
63 |
-
def get_video_info(video_path):
|
64 |
-
"""
|
65 |
-
Probes the uploaded video and returns updated slider configs:
|
66 |
-
- seconds slider: max = int(duration)
|
67 |
-
- fps slider: max = int(orig_fps)
|
68 |
-
"""
|
69 |
-
if not video_path:
|
70 |
-
# Return default slider updates when no video is uploaded
|
71 |
-
return gr.update(maximum=10, value=3, step=1), gr.update(maximum=30, value=15, step=1)
|
72 |
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
res = subprocess.run(cmd, capture_output=True, text=True)
|
80 |
-
try:
|
81 |
-
import json
|
82 |
-
data = json.loads(res.stdout)
|
83 |
-
stream = next(s for s in data.get('streams', []) if s.get('codec_type') == 'video')
|
84 |
-
duration = float(stream.get('duration') or data.get('format', {}).get('duration', 0))
|
85 |
-
fr = stream.get('r_frame_rate', '0/1')
|
86 |
-
num, den = fr.split('/')
|
87 |
-
orig_fps = float(num) / float(den) if float(den) else 30
|
88 |
-
except Exception:
|
89 |
-
duration, orig_fps = 10, 30
|
90 |
-
|
91 |
-
# Configure sliders based on actual video properties
|
92 |
-
seconds_cfg = gr.update(maximum=int(duration), value=min(int(duration), 3), step=1)
|
93 |
-
fps_cfg = gr.update(maximum=int(orig_fps), value=min(int(orig_fps), 15), step=1)
|
94 |
-
return seconds_cfg, fps_cfg
|
95 |
|
96 |
-
# Step
|
97 |
-
def step1_trim(video_path, seconds, fps, state):
|
98 |
session_id = str(uuid.uuid4())
|
99 |
base_dir = os.path.join(os.environ["PIXEL3DMM_PREPROCESSED_DATA"], session_id)
|
|
|
100 |
state.update({"session_id": session_id, "base_dir": base_dir})
|
101 |
|
102 |
-
|
103 |
-
|
|
|
|
|
104 |
|
|
|
105 |
try:
|
106 |
-
# capture both stdout & stderr
|
107 |
p = subprocess.run([
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
trimmed
|
112 |
-
], check=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
|
113 |
-
|
114 |
-
all_output = []
|
115 |
-
|
116 |
-
for line in p.stdout:
|
117 |
-
print(line, end="") # real-time echo
|
118 |
-
all_output.append(line)
|
119 |
-
|
120 |
except subprocess.CalledProcessError as e:
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
state["trimmed_path"] = trimmed
|
127 |
-
return f"β
Step 1: Trimmed to {seconds}s @{fps}fps", state
|
128 |
-
|
129 |
-
# Step 2: Preprocessing β cropped video
|
130 |
-
@spaces.GPU()
|
131 |
-
def step2_preprocess(state):
|
132 |
-
session_id = state["session_id"]
|
133 |
-
base_dir = state["base_dir"]
|
134 |
-
trimmed = state["trimmed_path"]
|
135 |
-
|
136 |
-
try:
|
137 |
-
# capture both stdout & stderr
|
138 |
-
p = subprocess.run([
|
139 |
-
"python", "scripts/run_preprocessing.py",
|
140 |
-
"--video_or_images_path", trimmed
|
141 |
-
], check=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
|
142 |
-
except subprocess.CalledProcessError as e:
|
143 |
-
# e.stdout contains everything
|
144 |
-
err = f"β Preprocess failed (exit {e.returncode}).\n\n{e.stdout}"
|
145 |
return err, None, state
|
146 |
|
147 |
crop_dir = os.path.join(base_dir, "cropped")
|
148 |
-
|
149 |
-
|
150 |
-
return "β
Step 2: Preprocessing complete", video, state
|
151 |
|
152 |
-
|
|
|
153 |
@spaces.GPU()
|
154 |
-
def
|
155 |
-
session_id = state
|
156 |
-
|
|
|
157 |
|
158 |
try:
|
159 |
-
#
|
160 |
p = subprocess.run([
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
except subprocess.CalledProcessError as e:
|
165 |
-
|
166 |
-
err = f"β Normal map failed (exit {e.returncode}).\n\n{e.stdout}"
|
167 |
return err, None, state
|
168 |
-
|
169 |
-
normals_dir = os.path.join(base_dir, "p3dmm", "normals")
|
170 |
-
out = os.path.join(os.path.dirname(state["trimmed_path"]), f"normals_{session_id}.mp4")
|
171 |
-
video = make_video_from_frames(normals_dir, out)
|
172 |
-
return "β
Step 3: Normals inference complete", video, state
|
173 |
|
174 |
-
|
|
|
|
|
|
|
|
|
175 |
@spaces.GPU()
|
176 |
-
def
|
177 |
-
session_id = state
|
178 |
-
|
|
|
179 |
|
180 |
try:
|
181 |
-
#
|
182 |
p = subprocess.run([
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
except subprocess.CalledProcessError as e:
|
187 |
-
|
188 |
-
err = f"β UV map failed (exit {e.returncode}).\n\n{e.stdout}"
|
189 |
return err, None, state
|
190 |
|
191 |
-
uv_dir = os.path.join(base_dir, "p3dmm", "uv_map")
|
192 |
-
|
193 |
-
|
194 |
-
return "β
Step 4: UV map inference complete", video, state
|
195 |
|
196 |
-
# Step
|
197 |
@spaces.GPU()
|
198 |
-
def
|
199 |
-
session_id = state
|
|
|
|
|
|
|
200 |
script = os.path.join(os.environ["PIXEL3DMM_CODE_BASE"], "scripts", "track.py")
|
201 |
-
cmd = [
|
202 |
-
"python", script,
|
203 |
-
f"video_name={session_id}"
|
204 |
-
]
|
205 |
try:
|
206 |
-
#
|
207 |
-
p = subprocess.run(
|
|
|
|
|
|
|
208 |
except subprocess.CalledProcessError as e:
|
209 |
-
|
210 |
-
err = f"β Tracking failed (exit {e.returncode}).\n\n{e.stdout}"
|
211 |
return err, None, state
|
212 |
|
213 |
-
# if we get here, it succeeded:
|
214 |
tracking_dir = os.path.join(os.environ["PIXEL3DMM_TRACKING_OUTPUT"], session_id, "frames")
|
215 |
-
|
216 |
-
|
217 |
-
return "β
Step 5: Tracking complete", video, state
|
218 |
|
219 |
# Build Gradio UI
|
220 |
demo = gr.Blocks()
|
221 |
|
222 |
with demo:
|
223 |
-
gr.Markdown("##
|
224 |
with gr.Row():
|
225 |
with gr.Column():
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
fps_slider = gr.Slider(label="Frame Rate (fps)", minimum=15, maximum=30, step=1, value=15)
|
230 |
-
status = gr.Textbox(label="Status", lines=2, interactive=False)
|
231 |
-
state = gr.State({})
|
232 |
with gr.Column():
|
233 |
with gr.Row():
|
234 |
-
|
235 |
-
|
236 |
with gr.Row():
|
237 |
-
|
238 |
-
|
239 |
-
run_btn_1 = gr.Button("Run Pipeline 1")
|
240 |
-
run_btn_2 = gr.Button("Run Pipeline 2")
|
241 |
-
run_btn_3 = gr.Button("Run Pipeline 3")
|
242 |
-
run_btn_4 = gr.Button("Run Pipeline 4")
|
243 |
-
run_btn_5 = gr.Button("Run Pipeline 5")
|
244 |
|
245 |
-
|
246 |
-
|
|
|
|
|
|
|
247 |
|
248 |
# Pipeline execution
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
# .then(fn=step2_preprocess, inputs=[state], outputs=[status, crop_vid, state])
|
256 |
-
# .then(fn=step3_normals, inputs=[state], outputs=[status, normals_vid, state])
|
257 |
-
# .then(fn=step4_uv_map, inputs=[state], outputs=[status, uv_vid, state])
|
258 |
-
# .then(fn=step5_track, inputs=[state], outputs=[status, track_vid, state])
|
259 |
-
|
260 |
|
261 |
# ------------------------------------------------------------------
|
262 |
# START THE GRADIO SERVER
|
263 |
# ------------------------------------------------------------------
|
264 |
demo.queue()
|
265 |
-
|
266 |
demo.launch(share=True, ssr_mode=False)
|
267 |
|
|
|
8 |
import time
|
9 |
import gradio as gr
|
10 |
import sys
|
11 |
+
from PIL import Image
|
12 |
|
13 |
# Set environment variables
|
14 |
os.environ["PIXEL3DMM_CODE_BASE"] = f"{os.getcwd()}"
|
15 |
os.environ["PIXEL3DMM_PREPROCESSED_DATA"] = f"{os.getcwd()}/proprocess_results"
|
16 |
os.environ["PIXEL3DMM_TRACKING_OUTPUT"] = f"{os.getcwd()}/tracking_results"
|
17 |
|
18 |
+
|
19 |
def sh(cmd): subprocess.check_call(cmd, shell=True)
|
20 |
|
21 |
# only do this once per VM restart
|
|
|
45 |
install_cuda_toolkit()
|
46 |
|
47 |
|
48 |
+
# Utility to select first image from a folder
|
49 |
+
def first_image_from_dir(directory):
|
50 |
+
patterns = ["*.jpg", "*.png", "*.jpeg"]
|
51 |
+
files = []
|
52 |
+
for p in patterns:
|
53 |
+
files.extend(glob.glob(os.path.join(directory, p)))
|
54 |
if not files:
|
55 |
return None
|
56 |
+
return sorted(files)[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
+
# Step 1: Preprocess the input image (Save and Crop)
|
59 |
+
@spaces.GPU()
|
60 |
+
def preprocess_image(image_array, state):
|
61 |
+
# Check if an image was uploaded
|
62 |
+
if image_array is None:
|
63 |
+
return "β Please upload an image first.", None, state
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
+
# Step 1a: Save the uploaded image
|
|
|
66 |
session_id = str(uuid.uuid4())
|
67 |
base_dir = os.path.join(os.environ["PIXEL3DMM_PREPROCESSED_DATA"], session_id)
|
68 |
+
os.makedirs(base_dir, exist_ok=True)
|
69 |
state.update({"session_id": session_id, "base_dir": base_dir})
|
70 |
|
71 |
+
img = Image.fromarray(image_array)
|
72 |
+
saved_image_path = os.path.join(base_dir, f"{session_id}.png")
|
73 |
+
img.save(saved_image_path)
|
74 |
+
state["image_path"] = saved_image_path
|
75 |
|
76 |
+
# Step 1b: Run the preprocessing script
|
77 |
try:
|
|
|
78 |
p = subprocess.run([
|
79 |
+
"python", "scripts/run_preprocessing.py",
|
80 |
+
"--video_or_images_path", saved_image_path
|
81 |
+
], check=True, capture_output=True, text=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
except subprocess.CalledProcessError as e:
|
83 |
+
err = f"β Preprocess failed (exit {e.returncode}).\n\n{e.stdout}\n{e.stderr}"
|
84 |
+
# Clean up created directory on failure
|
85 |
+
shutil.rmtree(base_dir)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
return err, None, state
|
87 |
|
88 |
crop_dir = os.path.join(base_dir, "cropped")
|
89 |
+
image = first_image_from_dir(crop_dir)
|
90 |
+
return "β
Preprocessing complete", image, state
|
|
|
91 |
|
92 |
+
|
93 |
+
# Step 2: Normals inference β normals image
|
94 |
@spaces.GPU()
|
95 |
+
def step2_normals(state):
|
96 |
+
session_id = state.get("session_id")
|
97 |
+
if not session_id:
|
98 |
+
return "β Please preprocess an image first.", None, state
|
99 |
|
100 |
try:
|
101 |
+
# Execute the network inference for normals
|
102 |
p = subprocess.run([
|
103 |
+
"python", "scripts/network_inference.py",
|
104 |
+
"model.prediction_type=normals", f"video_name={session_id}"
|
105 |
+
], check=True, capture_output=True, text=True)
|
106 |
except subprocess.CalledProcessError as e:
|
107 |
+
err = f"β Normal map failed (exit {e.returncode}).\n\n{e.stdout}\n{e.stderr}"
|
|
|
108 |
return err, None, state
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
+
normals_dir = os.path.join(state["base_dir"], "p3dmm", "normals")
|
111 |
+
image = first_image_from_dir(normals_dir)
|
112 |
+
return "β
Step 2: Normals inference complete", image, state
|
113 |
+
|
114 |
+
# Step 3: UV map inference β uv map image
|
115 |
@spaces.GPU()
|
116 |
+
def step3_uv_map(state):
|
117 |
+
session_id = state.get("session_id")
|
118 |
+
if not session_id:
|
119 |
+
return "β Please preprocess an image first.", None, state
|
120 |
|
121 |
try:
|
122 |
+
# Execute the network inference for UV map
|
123 |
p = subprocess.run([
|
124 |
+
"python", "scripts/network_inference.py",
|
125 |
+
"model.prediction_type=uv_map", f"video_name={session_id}"
|
126 |
+
], check=True, capture_output=True, text=True)
|
127 |
except subprocess.CalledProcessError as e:
|
128 |
+
err = f"β UV map failed (exit {e.returncode}).\n\n{e.stdout}\n{e.stderr}"
|
|
|
129 |
return err, None, state
|
130 |
|
131 |
+
uv_dir = os.path.join(state["base_dir"], "p3dmm", "uv_map")
|
132 |
+
image = first_image_from_dir(uv_dir)
|
133 |
+
return "β
Step 3: UV map inference complete", image, state
|
|
|
134 |
|
135 |
+
# Step 4: Tracking β final tracking image
|
136 |
@spaces.GPU()
|
137 |
+
def step4_track(state):
|
138 |
+
session_id = state.get("session_id")
|
139 |
+
if not session_id:
|
140 |
+
return "β Please preprocess an image first.", None, state
|
141 |
+
|
142 |
script = os.path.join(os.environ["PIXEL3DMM_CODE_BASE"], "scripts", "track.py")
|
|
|
|
|
|
|
|
|
143 |
try:
|
144 |
+
# Execute the tracking script
|
145 |
+
p = subprocess.run([
|
146 |
+
"python", script,
|
147 |
+
f"video_name={session_id}"
|
148 |
+
], check=True, capture_output=True, text=True)
|
149 |
except subprocess.CalledProcessError as e:
|
150 |
+
err = f"β Tracking failed (exit {e.returncode}).\n\n{e.stdout}\n{e.stderr}"
|
|
|
151 |
return err, None, state
|
152 |
|
|
|
153 |
tracking_dir = os.path.join(os.environ["PIXEL3DMM_TRACKING_OUTPUT"], session_id, "frames")
|
154 |
+
image = first_image_from_dir(tracking_dir)
|
155 |
+
return "β
Step 4: Tracking complete", image, state
|
|
|
156 |
|
157 |
# Build Gradio UI
|
158 |
demo = gr.Blocks()
|
159 |
|
160 |
with demo:
|
161 |
+
gr.Markdown("## Image Processing Pipeline")
|
162 |
with gr.Row():
|
163 |
with gr.Column():
|
164 |
+
image_in = gr.Image(label="Upload Image", type="numpy", height=512)
|
165 |
+
status = gr.Textbox(label="Status", lines=2, interactive=False)
|
166 |
+
state = gr.State({})
|
|
|
|
|
|
|
167 |
with gr.Column():
|
168 |
with gr.Row():
|
169 |
+
crop_img = gr.Image(label="Preprocessed", height=256)
|
170 |
+
normals_img = gr.Image(label="Normals", height=256)
|
171 |
with gr.Row():
|
172 |
+
uv_img = gr.Image(label="UV Map", height=256)
|
173 |
+
track_img = gr.Image(label="Tracking", height=256)
|
|
|
|
|
|
|
|
|
|
|
174 |
|
175 |
+
with gr.Row():
|
176 |
+
preprocess_btn = gr.Button("Step 1: Preprocess")
|
177 |
+
normals_btn = gr.Button("Step 2: Normals")
|
178 |
+
uv_map_btn = gr.Button("Step 3: UV Map")
|
179 |
+
track_btn = gr.Button("Step 4: Track")
|
180 |
|
181 |
# Pipeline execution
|
182 |
+
preprocess_btn.click(fn=preprocess_image, inputs=[image_in, state], outputs=[status, crop_img, state])
|
183 |
+
normals_btn.click(fn=step2_normals, inputs=[state], outputs=[status, normals_img, state])
|
184 |
+
uv_map_btn.click(fn=step3_uv_map, inputs=[state], outputs=[status, uv_img, state])
|
185 |
+
track_btn.click(fn=step4_track, inputs=[state], outputs=[status, track_img, state])
|
186 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
|
188 |
# ------------------------------------------------------------------
|
189 |
# START THE GRADIO SERVER
|
190 |
# ------------------------------------------------------------------
|
191 |
demo.queue()
|
|
|
192 |
demo.launch(share=True, ssr_mode=False)
|
193 |
|