Spaces:
Running
on
Zero
Running
on
Zero
Create app_photo.py
Browse files- app_photo.py +192 -0
app_photo.py
ADDED
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
import trimesh
|
5 |
+
from pytorch3d.io import load_obj
|
6 |
+
from pixel3dmm.tracking.renderer_nvdiffrast import NVDRenderer
|
7 |
+
from pixel3dmm.tracking.flame.FLAME import FLAME
|
8 |
+
from pixel3dmm.tracking.tracker import Tracker
|
9 |
+
from pixel3dmm import env_paths
|
10 |
+
from omegaconf import OmegaConf
|
11 |
+
|
12 |
+
|
13 |
+
DEVICE = "cuda"
|
14 |
+
|
15 |
+
base_conf = OmegaConf.load(f'{env_paths.CODE_BASE}/configs/tracking.yaml')
|
16 |
+
|
17 |
+
_mesh_file = env_paths.head_template
|
18 |
+
flame_model = FLAME(base_conf).to(DEVICE)
|
19 |
+
|
20 |
+
_obj_faces = load_obj(_mesh_file)[1]
|
21 |
+
|
22 |
+
diff_renderer = NVDRenderer(
|
23 |
+
image_size=base_conf.size,
|
24 |
+
obj_filename=_mesh_file,
|
25 |
+
no_sh=False,
|
26 |
+
white_bg=True
|
27 |
+
).to(DEVICE)
|
28 |
+
|
29 |
+
|
30 |
+
# Utility to select first image from a folder
|
31 |
+
def first_image_from_dir(directory):
|
32 |
+
patterns = ["*.jpg", "*.png", "*.jpeg"]
|
33 |
+
files = []
|
34 |
+
for p in patterns:
|
35 |
+
files.extend(glob.glob(os.path.join(directory, p)))
|
36 |
+
if not files:
|
37 |
+
return None
|
38 |
+
return sorted(files)[0]
|
39 |
+
|
40 |
+
# Function to reset the UI and state
|
41 |
+
def reset_all():
|
42 |
+
return (
|
43 |
+
None, # crop_img
|
44 |
+
None, # normals_img
|
45 |
+
None, # uv_img
|
46 |
+
None, # track_img
|
47 |
+
"Awaiting new image upload...", # status
|
48 |
+
{}, # state
|
49 |
+
gr.update(interactive=True), # preprocess_btn
|
50 |
+
gr.update(interactive=False), # normals_btn
|
51 |
+
gr.update(interactive=False), # uv_map_btn
|
52 |
+
gr.update(interactive=False) # track_btn
|
53 |
+
)
|
54 |
+
|
55 |
+
# Step 1: Preprocess the input image (Save and Crop)
|
56 |
+
# @spaces.GPU()
|
57 |
+
def preprocess_image(image_array, state):
|
58 |
+
if image_array is None:
|
59 |
+
return "β Please upload an image first.", None, state, gr.update(interactive=True), gr.update(interactive=False)
|
60 |
+
|
61 |
+
session_id = str(uuid.uuid4())
|
62 |
+
base_dir = os.path.join(os.environ["PIXEL3DMM_PREPROCESSED_DATA"], session_id)
|
63 |
+
os.makedirs(base_dir, exist_ok=True)
|
64 |
+
state.update({"session_id": session_id, "base_dir": base_dir})
|
65 |
+
|
66 |
+
img = Image.fromarray(image_array)
|
67 |
+
saved_image_path = os.path.join(base_dir, f"{session_id}.png")
|
68 |
+
img.save(saved_image_path)
|
69 |
+
state["image_path"] = saved_image_path
|
70 |
+
|
71 |
+
try:
|
72 |
+
p = subprocess.run([
|
73 |
+
"python", "scripts/run_preprocessing.py", "--video_or_images_path", saved_image_path
|
74 |
+
], check=True, capture_output=True, text=True)
|
75 |
+
except subprocess.CalledProcessError as e:
|
76 |
+
err = f"β Preprocess failed (exit {e.returncode}).\n\n{e.stdout}\n{e.stderr}"
|
77 |
+
shutil.rmtree(base_dir)
|
78 |
+
return err, None, {}, gr.update(interactive=True), gr.update(interactive=False)
|
79 |
+
|
80 |
+
crop_dir = os.path.join(base_dir, "cropped")
|
81 |
+
image = first_image_from_dir(crop_dir)
|
82 |
+
return "β
Step 1 complete. Ready for Normals.", image, state, gr.update(interactive=False), gr.update(interactive=True)
|
83 |
+
|
84 |
+
# Step 2: Normals inference β normals image
|
85 |
+
@spaces.GPU()
|
86 |
+
def step2_normals(state):
|
87 |
+
session_id = state.get("session_id")
|
88 |
+
if not session_id:
|
89 |
+
return "β State lost. Please start from Step 1.", None, state, gr.update(interactive=False), gr.update(interactive=False)
|
90 |
+
|
91 |
+
try:
|
92 |
+
p = subprocess.run([
|
93 |
+
"python", "scripts/network_inference.py", "model.prediction_type=normals", f"video_name={session_id}"
|
94 |
+
], check=True, capture_output=True, text=True)
|
95 |
+
except subprocess.CalledProcessError as e:
|
96 |
+
err = f"β Normal map failed (exit {e.returncode}).\n\n{e.stdout}\n{e.stderr}"
|
97 |
+
return err, None, state, gr.update(interactive=True), gr.update(interactive=False)
|
98 |
+
|
99 |
+
normals_dir = os.path.join(state["base_dir"], "p3dmm", "normals")
|
100 |
+
image = first_image_from_dir(normals_dir)
|
101 |
+
return "β
Step 2 complete. Ready for UV Map.", image, state, gr.update(interactive=False), gr.update(interactive=True)
|
102 |
+
|
103 |
+
# Step 3: UV map inference β uv map image
|
104 |
+
@spaces.GPU()
|
105 |
+
def step3_uv_map(state):
|
106 |
+
session_id = state.get("session_id")
|
107 |
+
if not session_id:
|
108 |
+
return "β State lost. Please start from Step 1.", None, state, gr.update(interactive=False), gr.update(interactive=False)
|
109 |
+
|
110 |
+
try:
|
111 |
+
p = subprocess.run([
|
112 |
+
"python", "scripts/network_inference.py", "model.prediction_type=uv_map", f"video_name={session_id}"
|
113 |
+
], check=True, capture_output=True, text=True)
|
114 |
+
except subprocess.CalledProcessError as e:
|
115 |
+
err = f"β UV map failed (exit {e.returncode}).\n\n{e.stdout}\n{e.stderr}"
|
116 |
+
return err, None, state, gr.update(interactive=True), gr.update(interactive=False)
|
117 |
+
|
118 |
+
uv_dir = os.path.join(state["base_dir"], "p3dmm", "uv_map")
|
119 |
+
image = first_image_from_dir(uv_dir)
|
120 |
+
return "β
Step 3 complete. Ready for Tracking.", image, state, gr.update(interactive=False), gr.update(interactive=True)
|
121 |
+
|
122 |
+
# Step 4: Tracking β final tracking image
|
123 |
+
@spaces.GPU()
|
124 |
+
def step4_track(state):
|
125 |
+
session_id = state.get("session_id")
|
126 |
+
base_conf.video_name = f'{session_id}'
|
127 |
+
tracker = Tracker(base_conf, flame_model, diff_renderer)
|
128 |
+
tracker.run()
|
129 |
+
|
130 |
+
tracking_dir = os.path.join(os.environ["PIXEL3DMM_TRACKING_OUTPUT"], session_id, "frames")
|
131 |
+
image = first_image_from_dir(tracking_dir)
|
132 |
+
|
133 |
+
return "β
Pipeline complete!", image, state, gr.update(interactive=False)
|
134 |
+
|
135 |
+
# Build Gradio UI
|
136 |
+
demo = gr.Blocks()
|
137 |
+
|
138 |
+
with demo:
|
139 |
+
gr.Markdown("## Image Processing Pipeline")
|
140 |
+
gr.Markdown("Upload an image, then click the buttons in order. Uploading a new image will reset the process.")
|
141 |
+
with gr.Row():
|
142 |
+
with gr.Column():
|
143 |
+
image_in = gr.Image(label="Upload Image", type="numpy", height=512)
|
144 |
+
status = gr.Textbox(label="Status", lines=2, interactive=False, value="Upload an image to start.")
|
145 |
+
state = gr.State({})
|
146 |
+
with gr.Column():
|
147 |
+
with gr.Row():
|
148 |
+
crop_img = gr.Image(label="Preprocessed", height=256)
|
149 |
+
normals_img = gr.Image(label="Normals", height=256)
|
150 |
+
with gr.Row():
|
151 |
+
uv_img = gr.Image(label="UV Map", height=256)
|
152 |
+
track_img = gr.Image(label="Tracking", height=256)
|
153 |
+
|
154 |
+
with gr.Row():
|
155 |
+
preprocess_btn = gr.Button("Step 1: Preprocess", interactive=True)
|
156 |
+
normals_btn = gr.Button("Step 2: Normals", interactive=False)
|
157 |
+
uv_map_btn = gr.Button("Step 3: UV Map", interactive=False)
|
158 |
+
track_btn = gr.Button("Step 4: Track", interactive=False)
|
159 |
+
|
160 |
+
# Define component list for reset
|
161 |
+
outputs_for_reset = [crop_img, normals_img, uv_img, track_img, status, state, preprocess_btn, normals_btn, uv_map_btn, track_btn]
|
162 |
+
|
163 |
+
# Pipeline execution logic
|
164 |
+
preprocess_btn.click(
|
165 |
+
fn=preprocess_image,
|
166 |
+
inputs=[image_in, state],
|
167 |
+
outputs=[status, crop_img, state, preprocess_btn, normals_btn]
|
168 |
+
)
|
169 |
+
normals_btn.click(
|
170 |
+
fn=step2_normals,
|
171 |
+
inputs=[state],
|
172 |
+
outputs=[status, normals_img, state, normals_btn, uv_map_btn]
|
173 |
+
)
|
174 |
+
uv_map_btn.click(
|
175 |
+
fn=step3_uv_map,
|
176 |
+
inputs=[state],
|
177 |
+
outputs=[status, uv_img, state, uv_map_btn, track_btn]
|
178 |
+
)
|
179 |
+
track_btn.click(
|
180 |
+
fn=step4_track,
|
181 |
+
inputs=[state],
|
182 |
+
outputs=[status, track_img, state, track_btn]
|
183 |
+
)
|
184 |
+
|
185 |
+
# Event to reset everything when a new image is uploaded
|
186 |
+
image_in.upload(fn=reset_all, inputs=None, outputs=outputs_for_reset)
|
187 |
+
|
188 |
+
# ------------------------------------------------------------------
|
189 |
+
# START THE GRADIO SERVER
|
190 |
+
# ------------------------------------------------------------------
|
191 |
+
demo.queue()
|
192 |
+
demo.launch(share=True, ssr_mode=False)
|