Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -7,7 +7,6 @@ import os
|
|
7 |
# Force Dynamo off at import‐time of torch, pytorch3d, etc.
|
8 |
os.environ["TORCHDYNAMO_DISABLE"] = "1"
|
9 |
|
10 |
-
from gradio_litmodel3d import LitModel3D
|
11 |
import subprocess
|
12 |
import tempfile
|
13 |
import uuid
|
@@ -64,6 +63,7 @@ install_cuda_toolkit()
|
|
64 |
|
65 |
from omegaconf import OmegaConf
|
66 |
from pixel3dmm.network_inference import normals_n_uvs
|
|
|
67 |
|
68 |
DEVICE = "cuda"
|
69 |
|
@@ -92,7 +92,6 @@ def reset_all():
|
|
92 |
None, # uv_img
|
93 |
None, # track_img
|
94 |
"Time to Generate!", # status
|
95 |
-
{}, # state
|
96 |
gr.update(interactive=True), # preprocess_btn
|
97 |
gr.update(interactive=True), # normals_btn
|
98 |
gr.update(interactive=True), # uv_map_btn
|
@@ -111,15 +110,27 @@ def preprocess_image(image_array, session_id):
|
|
111 |
img = Image.fromarray(image_array)
|
112 |
saved_image_path = os.path.join(os.environ["PIXEL3DMM_PREPROCESSED_DATA"], session_id, f"{session_id}.png")
|
113 |
img.save(saved_image_path)
|
114 |
-
|
115 |
-
|
116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
"python", "scripts/run_preprocessing.py", "--video_or_images_path", saved_image_path
|
118 |
], check=True, capture_output=True, text=True)
|
119 |
-
|
120 |
-
|
121 |
-
shutil.rmtree(base_dir, ignore_errors=True)
|
122 |
-
return err, None, gr.update(interactive=True), gr.update(interactive=True)
|
123 |
|
124 |
crop_dir = os.path.join(os.environ["PIXEL3DMM_PREPROCESSED_DATA"], session_id, "cropped")
|
125 |
image = first_image_from_dir(crop_dir)
|
@@ -246,7 +257,7 @@ def generate_results_and_mesh(image, session_id=None):
|
|
246 |
# Step 1
|
247 |
status1, crop_img, _, _ = preprocess_image(image, session_id)
|
248 |
if "❌" in status1:
|
249 |
-
|
250 |
# Step 2
|
251 |
status2, normals_img, _, _ = step2_normals(session_id)
|
252 |
# Step 3
|
@@ -348,4 +359,4 @@ with gr.Blocks(css=css) as demo:
|
|
348 |
demo.queue(default_concurrency_limit=1, # ≤ 1 worker per event
|
349 |
max_size=20) # optional: allow 20 waiting jobs
|
350 |
|
351 |
-
demo.launch()
|
|
|
7 |
# Force Dynamo off at import‐time of torch, pytorch3d, etc.
|
8 |
os.environ["TORCHDYNAMO_DISABLE"] = "1"
|
9 |
|
|
|
10 |
import subprocess
|
11 |
import tempfile
|
12 |
import uuid
|
|
|
63 |
|
64 |
from omegaconf import OmegaConf
|
65 |
from pixel3dmm.network_inference import normals_n_uvs
|
66 |
+
from pixel3dmm.run_facer_segmentation import segment
|
67 |
|
68 |
DEVICE = "cuda"
|
69 |
|
|
|
92 |
None, # uv_img
|
93 |
None, # track_img
|
94 |
"Time to Generate!", # status
|
|
|
95 |
gr.update(interactive=True), # preprocess_btn
|
96 |
gr.update(interactive=True), # normals_btn
|
97 |
gr.update(interactive=True), # uv_map_btn
|
|
|
110 |
img = Image.fromarray(image_array)
|
111 |
saved_image_path = os.path.join(os.environ["PIXEL3DMM_PREPROCESSED_DATA"], session_id, f"{session_id}.png")
|
112 |
img.save(saved_image_path)
|
113 |
+
|
114 |
+
import facer
|
115 |
+
|
116 |
+
if "face_detector" not in _model_cache:
|
117 |
+
|
118 |
+
device = 'cuda'
|
119 |
+
|
120 |
+
# This call downloads/loads the RetinaFace Mobilenet weights
|
121 |
+
face_detector = facer.face_detector('retinaface/mobilenet', device=device)
|
122 |
+
|
123 |
+
# This call downloads/loads the FARL parsing model (celeba mask model)
|
124 |
+
face_parser = facer.face_parser ('farl/celebm/448', device=device)
|
125 |
+
|
126 |
+
_model_cache['face_detector'] = face_detector
|
127 |
+
_model_cache['face_parser'] = face_parser
|
128 |
+
|
129 |
+
subprocess.run([
|
130 |
"python", "scripts/run_preprocessing.py", "--video_or_images_path", saved_image_path
|
131 |
], check=True, capture_output=True, text=True)
|
132 |
+
|
133 |
+
segment(f'{session_id}', _model_cache['face_detector'], _model_cache['face_parser'])
|
|
|
|
|
134 |
|
135 |
crop_dir = os.path.join(os.environ["PIXEL3DMM_PREPROCESSED_DATA"], session_id, "cropped")
|
136 |
image = first_image_from_dir(crop_dir)
|
|
|
257 |
# Step 1
|
258 |
status1, crop_img, _, _ = preprocess_image(image, session_id)
|
259 |
if "❌" in status1:
|
260 |
+
return status1, None, None, None, None, None
|
261 |
# Step 2
|
262 |
status2, normals_img, _, _ = step2_normals(session_id)
|
263 |
# Step 3
|
|
|
359 |
demo.queue(default_concurrency_limit=1, # ≤ 1 worker per event
|
360 |
max_size=20) # optional: allow 20 waiting jobs
|
361 |
|
362 |
+
demo.launch(share=True)
|