alexneakameni's picture
Update app.py
36caef8 verified
raw
history blame
1.66 kB
import gradio as gr
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer
# Load model and tokenizer
model_name = "alexneakameni/language_detection"
device = "cuda" if torch.cuda.is_available() else "cpu"
model = AutoModelForSequenceClassification.from_pretrained(model_name).to(device)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Get label mapping
id2label = model.config.id2label
def predict_language(text, top_k=5):
"""Predicts the top-k languages for the given text."""
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512).to(device)
with torch.no_grad():
logits = model(**inputs).logits
probs = torch.nn.functional.softmax(logits, dim=-1).squeeze()
top_probs, top_indices = torch.topk(probs, top_k)
results = [f"{id2label[idx.item()]}: {prob:.4f}" for prob, idx in zip(top_probs, top_indices)]
return "\n".join(results)
# Create Gradio interface
demo = gr.Interface(
fn=predict_language,
inputs=[
gr.Textbox(label="Enter text", placeholder="Type a sentence here..."),
gr.Slider(1, 10, value=5, step=1, label="Top-k Languages")
],
outputs=gr.Textbox(label="Predicted Languages"),
title="🌍 Language Detection",
description="Detects the language of a given text using a fine-tuned BERT model. Returns the top-k most probable languages.",
examples=[
["Hello, how are you?", 5],
["Bonjour, comment ça va?", 5],
["Hola, ¿cómo estás?", 5],
["Hallo, wie geht es dir?", 5],
["Привет, как дела?", 5]
]
)
demo.launch()