Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
4 |
+
|
5 |
+
# Load model and tokenizer
|
6 |
+
model_name = "alexneakameni/language_detection"
|
7 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
8 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name).to(device)
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
10 |
+
|
11 |
+
# Get label mapping
|
12 |
+
id2label = model.config.id2label
|
13 |
+
|
14 |
+
def predict_language(text, top_k=5):
|
15 |
+
"""Predicts the top-k languages for the given text."""
|
16 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512).to(device)
|
17 |
+
with torch.no_grad():
|
18 |
+
logits = model(**inputs).logits
|
19 |
+
|
20 |
+
probs = torch.nn.functional.softmax(logits, dim=-1).squeeze()
|
21 |
+
top_probs, top_indices = torch.topk(probs, top_k)
|
22 |
+
|
23 |
+
results = [f"{id2label[str(idx.item())]}: {prob:.4f}" for prob, idx in zip(top_probs, top_indices)]
|
24 |
+
return "\n".join(results)
|
25 |
+
|
26 |
+
# Create Gradio interface
|
27 |
+
demo = gr.Interface(
|
28 |
+
fn=predict_language,
|
29 |
+
inputs=[
|
30 |
+
gr.Textbox(label="Enter text", placeholder="Type a sentence here..."),
|
31 |
+
gr.Slider(1, 10, value=5, step=1, label="Top-k Languages")
|
32 |
+
],
|
33 |
+
outputs=gr.Textbox(label="Predicted Languages"),
|
34 |
+
title="🌍 Language Detection",
|
35 |
+
description="Detects the language of a given text using a fine-tuned BERT model. Returns the top-k most probable languages."
|
36 |
+
)
|
37 |
+
|
38 |
+
demo.launch()
|