import torch from torchtext.data.utils import get_tokenizer from model_arch import TextClassifierModel, load_state_dict model_trained = torch.load('model_checkpoint.pth') vocab = torch.load('vocab.pt') tokenizer = get_tokenizer("spacy", language="es") text_pipeline = lambda x: vocab(tokenizer(x)) num_class = 11 vocab_size = len(vocab) embed_size = 300 lr = 0.4 model = TextClassifierModel(vocab_size, embed_size, num_class) optimizer = torch.optim.SGD(model_test.parameters(), lr=0.4) model, optimizer = load_state_dict(model, optimizer, model_trained, vocab)