import torch.nn as nn import torch.nn.functional as F class TextClassifierModel(nn.Module): def __init__(self, vocab_size, embed_size, num_class): super(TextClassifierModel, self).__init__() self.embedding = nn.EmbeddingBag(vocab_size, embed_size) self.bn1 = nn.BatchNorm1d(embed_size) self.fc = nn.Linear(embed_size, num_class) def forward(self, text, offsets): embedded = self.embedding(text, offsets) embedded_norm = self.bn1(embedded) embedded_activated = F.relu(embedded_norm) return self.fc(embedded_activated)