alexrods
add documentation in app.py
c186c89
'''
This Python script is a web application that performs human body part segmentation
using a pre-trained deep learning model called DeepLabv3+.
The application is built using the Streamlit library and uses the Hugging Face Hub
to download the pre-trained model.
'''
# import libraries
import numpy as np
import tensorflow as tf
import streamlit as st
from PIL import Image
from huggingface_hub import from_pretrained_keras
import cv2
# The model used is the DeepLabv3+ model with a ResNet50 backbone.
model = from_pretrained_keras("keras-io/deeplabv3p-resnet50")
# A colormap is defined to map the predicted segmentation masks to colors for better visualization
colormap = np.array([[0,0,0], [31,119,180], [44,160,44], [44, 127, 125], [52, 225, 143],
[217, 222, 163], [254, 128, 37], [130, 162, 128], [121, 7, 166], [136, 183, 248],
[85, 1, 76], [22, 23, 62], [159, 50, 15], [101, 93, 152], [252, 229, 92],
[167, 173, 17], [218, 252, 252], [238, 126, 197], [116, 157, 140], [214, 220, 252]], dtype=np.uint8)
# size of the input image is defined as 512x512 pixels
img_size = 512
def read_image(image):
'''
read_image: reads in the input image and preprocesses it
by resizing it to the defined size and normalizing it to values between -1 and 1
'''
image = tf.convert_to_tensor(image)
image.set_shape([None, None, 3])
image = tf.image.resize(images=image, size=[img_size, img_size])
image = image / 255
return image
def infer(model, image_tensor):
'''
infer: performs inference using the pre-trained model and returns the predicted segmentation mask.
'''
predictions = model.predict(np.expand_dims((image_tensor), axis=0))
predictions = np.squeeze(predictions)
predictions = np.argmax(predictions, axis=2)
return predictions
def decode_segmentation_masks(mask, colormap, n_classes):
'''
decode_segmentation_masks: maps the predicted segmentation mask to the defined colormap
to produce a colored mask.
'''
r = np.zeros_like(mask).astype(np.uint8)
g = np.zeros_like(mask).astype(np.uint8)
b = np.zeros_like(mask).astype(np.uint8)
for l in range(0, n_classes):
idx = mask == l
r[idx] = colormap[l, 0]
g[idx] = colormap[l, 1]
b[idx] = colormap[l, 2]
rgb = np.stack([r, g, b], axis=2)
return rgb
def get_overlay(image, colored_mask):
'''
get_overlay: overlays the colored mask on the original image for visualization
'''
image = tf.keras.preprocessing.image.array_to_img(image)
image = np.array(image).astype(np.uint8)
overlay = cv2.addWeighted(image, 0.35, colored_mask, 0.65, 0)
return overlay
def segmentation(input_image):
'''
segmentation:
returns,
- prediction_colormap: function is used to convert the prediction mask into a colored mask,
where each class is assigned a unique color from a predefined color map.
- overlay: used to create an overlay image by blending the original input image with the colored mask
'''
image_tensor = read_image(input_image)
prediction_mask = infer(image_tensor=image_tensor, model=model)
prediction_colormap = decode_segmentation_masks(prediction_mask, colormap, 20)
overlay = get_overlay(image_tensor, prediction_colormap)
return (overlay, prediction_colormap)
## Streamlit interface
st.header("Segmentaci贸n de partes del cuerpo humano")
st.subheader("Demo de Spaces usando Streamlit y segmentacion de imagenes [Space original](https://huggingface.co/spaces/PKaushik/Human-Part-Segmentation)")
st.markdown("Sube una imagen o selecciona un ejemplo para segmentar las distintas partes del cuerpo humano")
file_imagen = st.file_uploader("Sube aqu铆 tu imagen", type=["png", "jpg", "jpeg"])
examples = ["example_image_1.jpg", "example_image_2.jpg", "example_image_3.jpg"]
col1, col2, col3 = st.columns(3)
with col1:
ex1 = Image.open(examples[0])
st.image(ex1, width=200)
if st.button("Corre ejemplo 1"):
file_imagen = examples[0]
with col2:
ex2 = Image.open(examples[1])
st.image(ex2, width=200)
if st.button("Corre ejemplo 2"):
file_imagen = examples[1]
with col3:
ex3 = Image.open(examples[2])
st.image(ex3, width=200)
if st.button("Corre ejemplo 3"):
file_imagen = examples[2]
if file_imagen is not None:
img = Image.open(file_imagen)
output = segmentation(img)
if output is not None:
st.subheader("Original: ")
st.image(img, width=850)
col1, col2 = st.columns(2)
with col1:
st.subheader("Segmentaci贸n: ")
st.image(output[0], width=425)
with col2:
st.subheader("Mask: ")
st.image(output[1], width=425)