Spaces:
Runtime error
Runtime error
''' | |
This Python script is a web application that performs human body part segmentation | |
using a pre-trained deep learning model called DeepLabv3+. | |
The application is built using the Streamlit library and uses the Hugging Face Hub | |
to download the pre-trained model. | |
''' | |
# import libraries | |
import numpy as np | |
import tensorflow as tf | |
import streamlit as st | |
from PIL import Image | |
from huggingface_hub import from_pretrained_keras | |
import cv2 | |
# The model used is the DeepLabv3+ model with a ResNet50 backbone. | |
model = from_pretrained_keras("keras-io/deeplabv3p-resnet50") | |
# A colormap is defined to map the predicted segmentation masks to colors for better visualization | |
colormap = np.array([[0,0,0], [31,119,180], [44,160,44], [44, 127, 125], [52, 225, 143], | |
[217, 222, 163], [254, 128, 37], [130, 162, 128], [121, 7, 166], [136, 183, 248], | |
[85, 1, 76], [22, 23, 62], [159, 50, 15], [101, 93, 152], [252, 229, 92], | |
[167, 173, 17], [218, 252, 252], [238, 126, 197], [116, 157, 140], [214, 220, 252]], dtype=np.uint8) | |
# size of the input image is defined as 512x512 pixels | |
img_size = 512 | |
def read_image(image): | |
''' | |
read_image: reads in the input image and preprocesses it | |
by resizing it to the defined size and normalizing it to values between -1 and 1 | |
''' | |
image = tf.convert_to_tensor(image) | |
image.set_shape([None, None, 3]) | |
image = tf.image.resize(images=image, size=[img_size, img_size]) | |
image = image / 255 | |
return image | |
def infer(model, image_tensor): | |
''' | |
infer: performs inference using the pre-trained model and returns the predicted segmentation mask. | |
''' | |
predictions = model.predict(np.expand_dims((image_tensor), axis=0)) | |
predictions = np.squeeze(predictions) | |
predictions = np.argmax(predictions, axis=2) | |
return predictions | |
def decode_segmentation_masks(mask, colormap, n_classes): | |
''' | |
decode_segmentation_masks: maps the predicted segmentation mask to the defined colormap | |
to produce a colored mask. | |
''' | |
r = np.zeros_like(mask).astype(np.uint8) | |
g = np.zeros_like(mask).astype(np.uint8) | |
b = np.zeros_like(mask).astype(np.uint8) | |
for l in range(0, n_classes): | |
idx = mask == l | |
r[idx] = colormap[l, 0] | |
g[idx] = colormap[l, 1] | |
b[idx] = colormap[l, 2] | |
rgb = np.stack([r, g, b], axis=2) | |
return rgb | |
def get_overlay(image, colored_mask): | |
''' | |
get_overlay: overlays the colored mask on the original image for visualization | |
''' | |
image = tf.keras.preprocessing.image.array_to_img(image) | |
image = np.array(image).astype(np.uint8) | |
overlay = cv2.addWeighted(image, 0.35, colored_mask, 0.65, 0) | |
return overlay | |
def segmentation(input_image): | |
''' | |
segmentation: | |
returns, | |
- prediction_colormap: function is used to convert the prediction mask into a colored mask, | |
where each class is assigned a unique color from a predefined color map. | |
- overlay: used to create an overlay image by blending the original input image with the colored mask | |
''' | |
image_tensor = read_image(input_image) | |
prediction_mask = infer(image_tensor=image_tensor, model=model) | |
prediction_colormap = decode_segmentation_masks(prediction_mask, colormap, 20) | |
overlay = get_overlay(image_tensor, prediction_colormap) | |
return (overlay, prediction_colormap) | |
## Streamlit interface | |
st.header("Segmentaci贸n de partes del cuerpo humano") | |
st.subheader("Demo de Spaces usando Streamlit y segmentacion de imagenes [Space original](https://huggingface.co/spaces/PKaushik/Human-Part-Segmentation)") | |
st.markdown("Sube una imagen o selecciona un ejemplo para segmentar las distintas partes del cuerpo humano") | |
file_imagen = st.file_uploader("Sube aqu铆 tu imagen", type=["png", "jpg", "jpeg"]) | |
examples = ["example_image_1.jpg", "example_image_2.jpg", "example_image_3.jpg"] | |
col1, col2, col3 = st.columns(3) | |
with col1: | |
ex1 = Image.open(examples[0]) | |
st.image(ex1, width=200) | |
if st.button("Corre ejemplo 1"): | |
file_imagen = examples[0] | |
with col2: | |
ex2 = Image.open(examples[1]) | |
st.image(ex2, width=200) | |
if st.button("Corre ejemplo 2"): | |
file_imagen = examples[1] | |
with col3: | |
ex3 = Image.open(examples[2]) | |
st.image(ex3, width=200) | |
if st.button("Corre ejemplo 3"): | |
file_imagen = examples[2] | |
if file_imagen is not None: | |
img = Image.open(file_imagen) | |
output = segmentation(img) | |
if output is not None: | |
st.subheader("Original: ") | |
st.image(img, width=850) | |
col1, col2 = st.columns(2) | |
with col1: | |
st.subheader("Segmentaci贸n: ") | |
st.image(output[0], width=425) | |
with col2: | |
st.subheader("Mask: ") | |
st.image(output[1], width=425) | |