alexrods commited on
Commit
05e606d
1 Parent(s): 238b730

add st interface

Browse files
Files changed (1) hide show
  1. app.py +87 -0
app.py CHANGED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import tensorflow as tf
3
+ import streamlit as st
4
+ from PIL import Image
5
+ from huggingface_hub import from_pretrained_keras
6
+ import cv2
7
+
8
+ st.header("Segmentacion de partes del cuerpo humano")
9
+
10
+ st.markdown("Sube una imagen o selecciona un ejemplo para segmentar las distintas partes del cuerpo humano")
11
+
12
+ file_imagen = st.file_uploader("Sube aqui tu imagen", type=["png", "jpg", "jpeg"])
13
+
14
+ model = from_pretrained_keras("keras-io/deeplabv3p-resnet50")
15
+
16
+ colormap = np.array([[0,0,0], [31,119,180], [44,160,44], [44, 127, 125], [52, 225, 143],
17
+ [217, 222, 163], [254, 128, 37], [130, 162, 128], [121, 7, 166], [136, 183, 248],
18
+ [85, 1, 76], [22, 23, 62], [159, 50, 15], [101, 93, 152], [252, 229, 92],
19
+ [167, 173, 17], [218, 252, 252], [238, 126, 197], [116, 157, 140], [214, 220, 252]], dtype=np.uint8)
20
+
21
+ img_size = 512
22
+
23
+ def read_image(image):
24
+ image = tf.convert_to_tensor(image)
25
+ image.set_shape([None, None, 3])
26
+ image = tf.image.resize(images=image, size=[img_size, img_size])
27
+ image = image / 127.5 - 1
28
+ return image
29
+
30
+ def infer(model, image_tensor):
31
+ predictions = model.predict(np.expand_dims((image_tensor), axis=0))
32
+ predictions = np.squeeze(predictions)
33
+ predictions = np.argmax(predictions, axis=2)
34
+ return predictions
35
+
36
+ def decode_segmentation_masks(mask, colormap, n_classes):
37
+ r = np.zeros_like(mask).astype(np.uint8)
38
+ g = np.zeros_like(mask).astype(np.uint8)
39
+ b = np.zeros_like(mask).astype(np.uint8)
40
+ for l in range(0, n_classes):
41
+ idx = mask == l
42
+ r[idx] = colormap[l, 0]
43
+ g[idx] = colormap[l, 1]
44
+ b[idx] = colormap[l, 2]
45
+ rgb = np.stack([r, g, b], axis=2)
46
+ return rgb
47
+
48
+ def get_overlay(image, colored_mask):
49
+ image = tf.keras.preprocessing.image.array_to_img(image)
50
+ image = np.array(image).astype(np.uint8)
51
+ overlay = cv2.addWeighted(image, 0.35, colored_mask, 0.65, 0)
52
+ return overlay
53
+
54
+ def segmentation(input_image):
55
+ image_tensor = read_image(input_image)
56
+ prediction_mask = infer(image_tensor=image_tensor, model=model)
57
+ prediction_colormap = decode_segmentation_masks(prediction_mask, colormap, 20)
58
+ overlay = get_overlay(image_tensor, prediction_colormap)
59
+ return (overlay, prediction_colormap)
60
+
61
+ i = gr.inputs.Image()
62
+ o = [gr.outputs.Image('pil'), gr.outputs.Image('pil')]
63
+
64
+ examples = [["example_image_2.jpeg"], ["example_image_2.jpg"], ["example_image_3.jpeg"]]
65
+
66
+ col1, col2, col3 = st.columns(3)
67
+ with col1:
68
+ ex1 = Image.open(examples[0])
69
+ st.image(ex1, width=200)
70
+ if st.button("Corre ejemplo 1"):
71
+ file_imagen = examples[0]
72
+
73
+ with col2:
74
+ ex2 = Image.open(examples[1])
75
+ st.image(ex2, width=200)
76
+ if st.button("Corre ejemplo 1"):
77
+ file_imagen = examples[1]S
78
+
79
+ with col3:
80
+ ex3 = Image.open(examples[2])
81
+ st.image(ex3, width=200)
82
+ if st.button("Corre ejemplo 1"):
83
+ file_imagen = examples[2]
84
+
85
+ article = "<div style='text-align: center;'><a href='https://keras.io/examples/vision/deeplabv3_plus/' target='_blank'>Keras example by Praveen Kaushik</a></div>"
86
+ # gr.Interface(segmentation, i, o, examples=examples, allow_flagging=False, analytics_enabled=False,
87
+ # title=title, description=description, article=article).launch(enable_queue=True)