alexrods commited on
Commit
54a96ff
·
1 Parent(s): 69cb9ce

fix error in app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -6
app.py CHANGED
@@ -5,11 +5,6 @@ from PIL import Image
5
  from huggingface_hub import from_pretrained_keras
6
  import cv2
7
 
8
- st.header("Segmentacion de partes del cuerpo humano")
9
-
10
- st.markdown("Sube una imagen o selecciona un ejemplo para segmentar las distintas partes del cuerpo humano")
11
-
12
- file_imagen = st.file_uploader("Sube aqui tu imagen", type=["png", "jpg", "jpeg"])
13
 
14
  model = from_pretrained_keras("keras-io/deeplabv3p-resnet50")
15
 
@@ -27,12 +22,14 @@ def read_image(image):
27
  image = image / 127.5 - 1
28
  return image
29
 
 
30
  def infer(model, image_tensor):
31
  predictions = model.predict(np.expand_dims((image_tensor), axis=0))
32
  predictions = np.squeeze(predictions)
33
  predictions = np.argmax(predictions, axis=2)
34
  return predictions
35
 
 
36
  def decode_segmentation_masks(mask, colormap, n_classes):
37
  r = np.zeros_like(mask).astype(np.uint8)
38
  g = np.zeros_like(mask).astype(np.uint8)
@@ -45,12 +42,14 @@ def decode_segmentation_masks(mask, colormap, n_classes):
45
  rgb = np.stack([r, g, b], axis=2)
46
  return rgb
47
 
 
48
  def get_overlay(image, colored_mask):
49
  image = tf.keras.preprocessing.image.array_to_img(image)
50
  image = np.array(image).astype(np.uint8)
51
  overlay = cv2.addWeighted(image, 0.35, colored_mask, 0.65, 0)
52
  return overlay
53
 
 
54
  def segmentation(input_image):
55
  image_tensor = read_image(input_image)
56
  prediction_mask = infer(image_tensor=image_tensor, model=model)
@@ -58,10 +57,16 @@ def segmentation(input_image):
58
  overlay = get_overlay(image_tensor, prediction_colormap)
59
  return (overlay, prediction_colormap)
60
 
 
61
  # i = gr.inputs.Image()
62
  # o = [gr.outputs.Image('pil'), gr.outputs.Image('pil')]
 
 
 
63
 
64
- examples = ["example_image_1.jpeg", "example_image_2.jpg", "example_image_3.jpeg"]
 
 
65
 
66
  col1, col2, col3 = st.columns(3)
67
  with col1:
@@ -82,6 +87,9 @@ with col3:
82
  if st.button("Corre ejemplo 1"):
83
  file_imagen = examples[2]
84
 
 
 
 
85
  article = "<div style='text-align: center;'><a href='https://keras.io/examples/vision/deeplabv3_plus/' target='_blank'>Keras example by Praveen Kaushik</a></div>"
86
  # gr.Interface(segmentation, i, o, examples=examples, allow_flagging=False, analytics_enabled=False,
87
  # title=title, description=description, article=article).launch(enable_queue=True)
 
5
  from huggingface_hub import from_pretrained_keras
6
  import cv2
7
 
 
 
 
 
 
8
 
9
  model = from_pretrained_keras("keras-io/deeplabv3p-resnet50")
10
 
 
22
  image = image / 127.5 - 1
23
  return image
24
 
25
+
26
  def infer(model, image_tensor):
27
  predictions = model.predict(np.expand_dims((image_tensor), axis=0))
28
  predictions = np.squeeze(predictions)
29
  predictions = np.argmax(predictions, axis=2)
30
  return predictions
31
 
32
+
33
  def decode_segmentation_masks(mask, colormap, n_classes):
34
  r = np.zeros_like(mask).astype(np.uint8)
35
  g = np.zeros_like(mask).astype(np.uint8)
 
42
  rgb = np.stack([r, g, b], axis=2)
43
  return rgb
44
 
45
+
46
  def get_overlay(image, colored_mask):
47
  image = tf.keras.preprocessing.image.array_to_img(image)
48
  image = np.array(image).astype(np.uint8)
49
  overlay = cv2.addWeighted(image, 0.35, colored_mask, 0.65, 0)
50
  return overlay
51
 
52
+
53
  def segmentation(input_image):
54
  image_tensor = read_image(input_image)
55
  prediction_mask = infer(image_tensor=image_tensor, model=model)
 
57
  overlay = get_overlay(image_tensor, prediction_colormap)
58
  return (overlay, prediction_colormap)
59
 
60
+
61
  # i = gr.inputs.Image()
62
  # o = [gr.outputs.Image('pil'), gr.outputs.Image('pil')]
63
+ st.header("Segmentacion de partes del cuerpo humano")
64
+
65
+ st.markdown("Sube una imagen o selecciona un ejemplo para segmentar las distintas partes del cuerpo humano")
66
 
67
+ file_imagen = st.file_uploader("Sube aqui tu imagen", type=["png", "jpg", "jpeg"])
68
+
69
+ examples = ["example_image_1.jpg", "example_image_2.jpg", "example_image_3.jpg"]
70
 
71
  col1, col2, col3 = st.columns(3)
72
  with col1:
 
87
  if st.button("Corre ejemplo 1"):
88
  file_imagen = examples[2]
89
 
90
+ # if archivo_imagen is not None:
91
+
92
+
93
  article = "<div style='text-align: center;'><a href='https://keras.io/examples/vision/deeplabv3_plus/' target='_blank'>Keras example by Praveen Kaushik</a></div>"
94
  # gr.Interface(segmentation, i, o, examples=examples, allow_flagging=False, analytics_enabled=False,
95
  # title=title, description=description, article=article).launch(enable_queue=True)