''' This Python script is a web application that performs human body part segmentation using a pre-trained deep learning model called DeepLabv3+. The application is built using the Streamlit library and uses the Hugging Face Hub to download the pre-trained model. ''' # import libraries import numpy as np import tensorflow as tf import streamlit as st from PIL import Image from huggingface_hub import from_pretrained_keras import cv2 # The model used is the DeepLabv3+ model with a ResNet50 backbone. model = from_pretrained_keras("keras-io/deeplabv3p-resnet50") # A colormap is defined to map the predicted segmentation masks to colors for better visualization colormap = np.array([[0,0,0], [31,119,180], [44,160,44], [44, 127, 125], [52, 225, 143], [217, 222, 163], [254, 128, 37], [130, 162, 128], [121, 7, 166], [136, 183, 248], [85, 1, 76], [22, 23, 62], [159, 50, 15], [101, 93, 152], [252, 229, 92], [167, 173, 17], [218, 252, 252], [238, 126, 197], [116, 157, 140], [214, 220, 252]], dtype=np.uint8) # size of the input image is defined as 512x512 pixels img_size = 512 def read_image(image): ''' read_image: reads in the input image and preprocesses it by resizing it to the defined size and normalizing it to values between -1 and 1 ''' image = tf.convert_to_tensor(image) image.set_shape([None, None, 3]) image = tf.image.resize(images=image, size=[img_size, img_size]) image = image / 255 return image def infer(model, image_tensor): ''' infer: performs inference using the pre-trained model and returns the predicted segmentation mask. ''' predictions = model.predict(np.expand_dims((image_tensor), axis=0)) predictions = np.squeeze(predictions) predictions = np.argmax(predictions, axis=2) return predictions def decode_segmentation_masks(mask, colormap, n_classes): ''' decode_segmentation_masks: maps the predicted segmentation mask to the defined colormap to produce a colored mask. ''' r = np.zeros_like(mask).astype(np.uint8) g = np.zeros_like(mask).astype(np.uint8) b = np.zeros_like(mask).astype(np.uint8) for l in range(0, n_classes): idx = mask == l r[idx] = colormap[l, 0] g[idx] = colormap[l, 1] b[idx] = colormap[l, 2] rgb = np.stack([r, g, b], axis=2) return rgb def get_overlay(image, colored_mask): ''' get_overlay: overlays the colored mask on the original image for visualization ''' image = tf.keras.preprocessing.image.array_to_img(image) image = np.array(image).astype(np.uint8) overlay = cv2.addWeighted(image, 0.35, colored_mask, 0.65, 0) return overlay def segmentation(input_image): ''' segmentation: returns, - prediction_colormap: function is used to convert the prediction mask into a colored mask, where each class is assigned a unique color from a predefined color map. - overlay: used to create an overlay image by blending the original input image with the colored mask ''' image_tensor = read_image(input_image) prediction_mask = infer(image_tensor=image_tensor, model=model) prediction_colormap = decode_segmentation_masks(prediction_mask, colormap, 20) overlay = get_overlay(image_tensor, prediction_colormap) return (overlay, prediction_colormap) ## Streamlit interface st.header("Segmentación de partes del cuerpo humano") st.subheader("Demo de Spaces usando Streamlit y segmentacion de imagenes [Space original](https://huggingface.co/spaces/PKaushik/Human-Part-Segmentation)") st.markdown("Sube una imagen o selecciona un ejemplo para segmentar las distintas partes del cuerpo humano") file_imagen = st.file_uploader("Sube aquí tu imagen", type=["png", "jpg", "jpeg"]) examples = ["example_image_1.jpg", "example_image_2.jpg", "example_image_3.jpg"] col1, col2, col3 = st.columns(3) with col1: ex1 = Image.open(examples[0]) st.image(ex1, width=200) if st.button("Corre ejemplo 1"): file_imagen = examples[0] with col2: ex2 = Image.open(examples[1]) st.image(ex2, width=200) if st.button("Corre ejemplo 2"): file_imagen = examples[1] with col3: ex3 = Image.open(examples[2]) st.image(ex3, width=200) if st.button("Corre ejemplo 3"): file_imagen = examples[2] if file_imagen is not None: img = Image.open(file_imagen) output = segmentation(img) if output is not None: st.subheader("Original: ") st.image(img, width=850) col1, col2 = st.columns(2) with col1: st.subheader("Segmentación: ") st.image(output[0], width=425) with col2: st.subheader("Mask: ") st.image(output[1], width=425) else: st.write("Ocurrió un error al segmentar la imagen, intenta con otra imagen")