Spaces:
Runtime error
Runtime error
File size: 13,715 Bytes
e72aedf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 |
"""
A model worker that executes the model.
"""
import argparse
import asyncio
import dataclasses
import logging
import json
import os
import time
from typing import List
import threading
import uuid
from fastapi import FastAPI, Request, BackgroundTasks
from fastapi.responses import StreamingResponse, JSONResponse
import requests
try:
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
LlamaTokenizer,
AutoModel,
)
except ImportError:
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
LLaMATokenizer,
AutoModel,
)
import torch
import torch.nn.functional as F
import uvicorn
from fastchat.constants import WORKER_HEART_BEAT_INTERVAL, ErrorCode, SERVER_ERROR_MSG
from fastchat.model.model_adapter import (
load_model,
add_model_args,
get_conversation_template,
get_generate_stream_function,
)
from fastchat.modules.gptq import GptqConfig
from fastchat.utils import build_logger, pretty_print_semaphore, get_context_length
worker_id = str(uuid.uuid4())[:8]
logger = build_logger("model_worker", f"model_worker_{worker_id}.log")
global_counter = 0
model_semaphore = None
app = FastAPI()
def heart_beat_worker(controller):
while True:
time.sleep(WORKER_HEART_BEAT_INTERVAL)
controller.send_heart_beat()
class BaseModelWorker:
def __init__(
self,
controller_addr: str,
worker_addr: str,
worker_id: str,
model_path: str,
model_names: List[str],
):
self.controller_addr = controller_addr
self.worker_addr = worker_addr
self.worker_id = worker_id
if model_path.endswith("/"):
model_path = model_path[:-1]
self.model_names = model_names or [model_path.split("/")[-1]]
self.conv = get_conversation_template(model_path)
self.tokenizer = None
self.context_len = None
self.heart_beat_thread = None
def init_heart_beat(self):
self.register_to_controller()
self.heart_beat_thread = threading.Thread(
target=heart_beat_worker, args=(self,)
)
self.heart_beat_thread.start()
def register_to_controller(self):
logger.info("Register to controller")
url = self.controller_addr + "/register_worker"
data = {
"worker_name": self.worker_addr,
"check_heart_beat": True,
"worker_status": self.get_status(),
}
r = requests.post(url, json=data)
assert r.status_code == 200
def send_heart_beat(self):
logger.info(
f"Send heart beat. Models: {self.model_names}. "
f"Semaphore: {pretty_print_semaphore(model_semaphore)}. "
f"global_counter: {global_counter}. "
f"worker_id: {worker_id}. "
)
url = self.controller_addr + "/receive_heart_beat"
while True:
try:
ret = requests.post(
url,
json={
"worker_name": self.worker_addr,
"queue_length": self.get_queue_length(),
},
timeout=5,
)
exist = ret.json()["exist"]
break
except requests.exceptions.RequestException as e:
logger.error(f"heart beat error: {e}")
time.sleep(5)
if not exist:
self.register_to_controller()
def get_queue_length(self):
if (
model_semaphore is None
or model_semaphore._value is None
or model_semaphore._waiters is None
):
return 0
else:
return (
args.limit_model_concurrency
- model_semaphore._value
+ len(model_semaphore._waiters)
)
def get_status(self):
return {
"model_names": self.model_names,
"speed": 1,
"queue_length": self.get_queue_length(),
}
def count_token(self, params):
prompt = params["prompt"]
input_ids = self.tokenizer(prompt).input_ids
input_echo_len = len(input_ids)
ret = {
"count": input_echo_len,
"error_code": 0,
}
return ret
def get_conv_template(self):
return {"conv": self.conv}
class ModelWorker(BaseModelWorker):
def __init__(
self,
controller_addr: str,
worker_addr: str,
worker_id: str,
model_path: str,
model_names: List[str],
no_register: bool,
device: str,
num_gpus: int,
max_gpu_memory: str,
load_8bit: bool = False,
cpu_offloading: bool = False,
gptq_config: bool = None,
):
super().__init__(
controller_addr, worker_addr, worker_id, model_path, model_names
)
logger.info(f"Loading the model {self.model_names} on worker {worker_id} ...")
self.model, self.tokenizer = load_model(
model_path,
device,
num_gpus,
max_gpu_memory,
load_8bit,
cpu_offloading,
gptq_config,
)
self.device = device
if self.tokenizer.pad_token == None:
self.tokenizer.pad_token = self.tokenizer.eos_token
self.context_len = get_context_length(self.model.config)
self.generate_stream_func = get_generate_stream_function(self.model, model_path)
if not no_register:
self.init_heart_beat()
def generate_stream_gate(self, params):
try:
for output in self.generate_stream_func(
self.model,
self.tokenizer,
params,
self.device,
self.context_len,
args.stream_interval,
):
ret = {
"text": output["text"],
"error_code": 0,
}
if "usage" in output:
ret["usage"] = output["usage"]
if "finish_reason" in output:
ret["finish_reason"] = output["finish_reason"]
if "logprobs" in output:
ret["logprobs"] = output["logprobs"]
yield json.dumps(ret).encode() + b"\0"
except torch.cuda.OutOfMemoryError as e:
ret = {
"text": f"{SERVER_ERROR_MSG}\n\n({e})",
"error_code": ErrorCode.CUDA_OUT_OF_MEMORY,
}
yield json.dumps(ret).encode() + b"\0"
except (ValueError, RuntimeError) as e:
ret = {
"text": f"{SERVER_ERROR_MSG}\n\n({e})",
"error_code": ErrorCode.INTERNAL_ERROR,
}
yield json.dumps(ret).encode() + b"\0"
def generate_gate(self, params):
for x in self.generate_stream_gate(params):
pass
return json.loads(x[:-1].decode())
@torch.inference_mode()
def get_embeddings(self, params):
try:
tokenizer = self.tokenizer
is_llama = "llama" in str(
type(self.model)
) # llama supports batch inference
is_chatglm = "chatglm" in str(type(self.model))
is_t5 = "t5" in str(type(self.model))
if is_llama:
encoding = tokenizer.batch_encode_plus(
params["input"], padding=True, return_tensors="pt"
)
input_ids = encoding["input_ids"].to(self.device)
attention_mask = encoding["attention_mask"].to(self.device)
model_output = self.model(
input_ids, attention_mask, output_hidden_states=True
)
data = model_output.hidden_states[-1]
mask = attention_mask.unsqueeze(-1).expand(data.size()).float()
masked_embeddings = data * mask
sum_embeddings = torch.sum(masked_embeddings, dim=1)
seq_length = torch.sum(mask, dim=1)
embedding = sum_embeddings / seq_length
normalized_embeddings = F.normalize(embedding, p=2, dim=1)
ret = {
"embedding": normalized_embeddings.tolist(),
"token_num": torch.sum(attention_mask).item(),
}
else:
embedding = []
token_num = 0
for text in params["input"]:
input_ids = tokenizer.encode(text, return_tensors="pt").to(
self.device
)
if is_t5:
model_output = self.model(
input_ids, decoder_input_ids=input_ids
)
else:
model_output = self.model(input_ids, output_hidden_states=True)
if is_chatglm:
data = (model_output.hidden_states[-1].transpose(0, 1))[0]
elif is_t5:
data = model_output.encoder_last_hidden_state[0]
else:
data = model_output.hidden_states[-1][0]
data = F.normalize(torch.mean(data, dim=0), p=2, dim=0)
embedding.append(data.tolist())
token_num += len(input_ids[0])
ret = {
"embedding": embedding,
"token_num": token_num,
}
except torch.cuda.OutOfMemoryError as e:
ret = {
"text": f"{SERVER_ERROR_MSG}\n\n({e})",
"error_code": ErrorCode.CUDA_OUT_OF_MEMORY,
}
except (ValueError, RuntimeError) as e:
ret = {
"text": f"{SERVER_ERROR_MSG}\n\n({e})",
"error_code": ErrorCode.INTERNAL_ERROR,
}
return ret
def release_model_semaphore():
model_semaphore.release()
def acquire_model_semaphore():
global model_semaphore, global_counter
global_counter += 1
if model_semaphore is None:
model_semaphore = asyncio.Semaphore(args.limit_model_concurrency)
return model_semaphore.acquire()
def create_background_tasks():
background_tasks = BackgroundTasks()
background_tasks.add_task(release_model_semaphore)
return background_tasks
@app.post("/worker_generate_stream")
async def api_generate_stream(request: Request):
params = await request.json()
await acquire_model_semaphore()
generator = worker.generate_stream_gate(params)
background_tasks = create_background_tasks()
return StreamingResponse(generator, background=background_tasks)
@app.post("/worker_generate")
async def api_generate(request: Request):
params = await request.json()
await acquire_model_semaphore()
output = worker.generate_gate(params)
release_model_semaphore()
return JSONResponse(output)
@app.post("/worker_get_embeddings")
async def api_get_embeddings(request: Request):
params = await request.json()
await acquire_model_semaphore()
embedding = worker.get_embeddings(params)
release_model_semaphore()
return JSONResponse(content=embedding)
@app.post("/worker_get_status")
async def api_get_status(request: Request):
return worker.get_status()
@app.post("/count_token")
async def api_count_token(request: Request):
params = await request.json()
return worker.count_token(params)
@app.post("/worker_get_conv_template")
async def api_get_conv(request: Request):
return worker.get_conv_template()
@app.post("/model_details")
async def api_model_details(request: Request):
return {"context_length": worker.context_len}
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--host", type=str, default="localhost")
parser.add_argument("--port", type=int, default=21002)
parser.add_argument("--worker-address", type=str, default="http://localhost:21002")
parser.add_argument(
"--controller-address", type=str, default="http://localhost:21001"
)
add_model_args(parser)
parser.add_argument(
"--model-names",
type=lambda s: s.split(","),
help="Optional display comma separated names",
)
parser.add_argument(
"--limit-model-concurrency",
type=int,
default=5,
help="Limit the model concurrency to prevent OOM.",
)
parser.add_argument("--stream-interval", type=int, default=2)
parser.add_argument("--no-register", action="store_true")
args = parser.parse_args()
logger.info(f"args: {args}")
if args.gpus:
if len(args.gpus.split(",")) < args.num_gpus:
raise ValueError(
f"Larger --num-gpus ({args.num_gpus}) than --gpus {args.gpus}!"
)
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpus
gptq_config = GptqConfig(
ckpt=args.gptq_ckpt or args.model_path,
wbits=args.gptq_wbits,
groupsize=args.gptq_groupsize,
act_order=args.gptq_act_order,
)
worker = ModelWorker(
args.controller_address,
args.worker_address,
worker_id,
args.model_path,
args.model_names,
args.no_register,
device=args.device,
num_gpus=args.num_gpus,
max_gpu_memory=args.max_gpu_memory,
load_8bit=args.load_8bit,
cpu_offloading=args.cpu_offloading,
gptq_config=gptq_config,
)
uvicorn.run(app, host=args.host, port=args.port, log_level="info")
|