Spaces:
Sleeping
Sleeping
File size: 8,610 Bytes
669c2e0 abde0ae 669c2e0 6072e4f 0a34307 669c2e0 6072e4f 669c2e0 0a34307 669c2e0 0a34307 669c2e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
import os
import cv2
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import matplotlib as mpl
import os
os.environ["PYOPENGL_PLATFORM"] = "egl"
import pyrender
import trimesh
from config import cfg
def vis_keypoints_with_skeleton(img, kps, kps_lines, kp_thresh=0.4, alpha=1):
# Convert from plt 0-1 RGBA colors to 0-255 BGR colors for opencv.
cmap = plt.get_cmap('rainbow')
colors = [cmap(i) for i in np.linspace(0, 1, len(kps_lines) + 2)]
colors = [(c[2] * 255, c[1] * 255, c[0] * 255) for c in colors]
# Perform the drawing on a copy of the image, to allow for blending.
kp_mask = np.copy(img)
# Draw the keypoints.
for l in range(len(kps_lines)):
i1 = kps_lines[l][0]
i2 = kps_lines[l][1]
p1 = kps[0, i1].astype(np.int32), kps[1, i1].astype(np.int32)
p2 = kps[0, i2].astype(np.int32), kps[1, i2].astype(np.int32)
if kps[2, i1] > kp_thresh and kps[2, i2] > kp_thresh:
cv2.line(
kp_mask, p1, p2,
color=colors[l], thickness=2, lineType=cv2.LINE_AA)
if kps[2, i1] > kp_thresh:
cv2.circle(
kp_mask, p1,
radius=3, color=colors[l], thickness=-1, lineType=cv2.LINE_AA)
if kps[2, i2] > kp_thresh:
cv2.circle(
kp_mask, p2,
radius=3, color=colors[l], thickness=-1, lineType=cv2.LINE_AA)
# Blend the keypoints.
return cv2.addWeighted(img, 1.0 - alpha, kp_mask, alpha, 0)
def vis_keypoints(img, kps, alpha=1, radius=3, color=None):
# Convert from plt 0-1 RGBA colors to 0-255 BGR colors for opencv.
cmap = plt.get_cmap('rainbow')
if color is None:
colors = [cmap(i) for i in np.linspace(0, 1, len(kps) + 2)]
colors = [(c[2] * 255, c[1] * 255, c[0] * 255) for c in colors]
# Perform the drawing on a copy of the image, to allow for blending.
kp_mask = np.copy(img)
# Draw the keypoints.
for i in range(len(kps)):
p = kps[i][0].astype(np.int32), kps[i][1].astype(np.int32)
if color is None:
cv2.circle(kp_mask, p, radius=radius, color=colors[i], thickness=-1, lineType=cv2.LINE_AA)
else:
cv2.circle(kp_mask, p, radius=radius, color=color, thickness=-1, lineType=cv2.LINE_AA)
# Blend the keypoints.
return cv2.addWeighted(img, 1.0 - alpha, kp_mask, alpha, 0)
def vis_mesh(img, mesh_vertex, alpha=0.5):
# Convert from plt 0-1 RGBA colors to 0-255 BGR colors for opencv.
cmap = plt.get_cmap('rainbow')
colors = [cmap(i) for i in np.linspace(0, 1, len(mesh_vertex))]
colors = [(c[2] * 255, c[1] * 255, c[0] * 255) for c in colors]
# Perform the drawing on a copy of the image, to allow for blending.
mask = np.copy(img)
# Draw the mesh
for i in range(len(mesh_vertex)):
p = mesh_vertex[i][0].astype(np.int32), mesh_vertex[i][1].astype(np.int32)
cv2.circle(mask, p, radius=1, color=colors[i], thickness=-1, lineType=cv2.LINE_AA)
# Blend the keypoints.
return cv2.addWeighted(img, 1.0 - alpha, mask, alpha, 0)
def vis_3d_skeleton(kpt_3d, kpt_3d_vis, kps_lines, filename=None):
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
# Convert from plt 0-1 RGBA colors to 0-255 BGR colors for opencv.
cmap = plt.get_cmap('rainbow')
colors = [cmap(i) for i in np.linspace(0, 1, len(kps_lines) + 2)]
colors = [np.array((c[2], c[1], c[0])) for c in colors]
for l in range(len(kps_lines)):
i1 = kps_lines[l][0]
i2 = kps_lines[l][1]
x = np.array([kpt_3d[i1,0], kpt_3d[i2,0]])
y = np.array([kpt_3d[i1,1], kpt_3d[i2,1]])
z = np.array([kpt_3d[i1,2], kpt_3d[i2,2]])
if kpt_3d_vis[i1,0] > 0 and kpt_3d_vis[i2,0] > 0:
ax.plot(x, z, -y, c=colors[l], linewidth=2)
if kpt_3d_vis[i1,0] > 0:
ax.scatter(kpt_3d[i1,0], kpt_3d[i1,2], -kpt_3d[i1,1], c=colors[l], marker='o')
if kpt_3d_vis[i2,0] > 0:
ax.scatter(kpt_3d[i2,0], kpt_3d[i2,2], -kpt_3d[i2,1], c=colors[l], marker='o')
x_r = np.array([0, cfg.input_shape[1]], dtype=np.float32)
y_r = np.array([0, cfg.input_shape[0]], dtype=np.float32)
z_r = np.array([0, 1], dtype=np.float32)
if filename is None:
ax.set_title('3D vis')
else:
ax.set_title(filename)
ax.set_xlabel('X Label')
ax.set_ylabel('Z Label')
ax.set_zlabel('Y Label')
ax.legend()
plt.show()
cv2.waitKey(0)
def save_obj(v, f, file_name='output.obj'):
obj_file = open(file_name, 'w')
for i in range(len(v)):
obj_file.write('v ' + str(v[i][0]) + ' ' + str(v[i][1]) + ' ' + str(v[i][2]) + '\n')
for i in range(len(f)):
obj_file.write('f ' + str(f[i][0]+1) + '/' + str(f[i][0]+1) + ' ' + str(f[i][1]+1) + '/' + str(f[i][1]+1) + ' ' + str(f[i][2]+1) + '/' + str(f[i][2]+1) + '\n')
obj_file.close()
def perspective_projection(vertices, cam_param):
# vertices: [N, 3]
# cam_param: [3]
fx, fy= cam_param['focal']
cx, cy = cam_param['princpt']
vertices[:, 0] = vertices[:, 0] * fx / vertices[:, 2] + cx
vertices[:, 1] = vertices[:, 1] * fy / vertices[:, 2] + cy
return vertices
def orthographic_projection(X, cam_param):
"""Perform orthographic projection of 3D points X using the camera parameters
Args:
X: size = [N, 3]
camera: size = [4]: sx, sy, tx, ty
Returns:
Projected 2D points -- size = [N, 2]
"""
sx, sy, tx, ty = cam_param
X_trans = X[:,:2].copy()
X_trans[:,0] = (X_trans[:,0] + tx) * sx
X_trans[:,1] = (X_trans[:,1] + ty) * sy
return X_trans.copy()
class WeakPerspectiveCamera(pyrender.Camera):
def __init__(self, scale, translation, znear=pyrender.camera.DEFAULT_Z_NEAR, zfar=None, name=None):
super(WeakPerspectiveCamera, self).__init__(znear=znear, zfar=zfar, name=name)
self.scale = scale
self.translation = translation
def get_projection_matrix(self, width=None, height=None):
P = np.eye(4)
P[0, 0] = self.scale[0]
P[1, 1] = self.scale[1]
P[0, 3] = self.translation[0] * self.scale[0]
P[1, 3] = -self.translation[1] * self.scale[1]
P[2, 2] = -1
return P
def render_mesh(img, mesh, face, cam_param, mesh_as_vertices=False):
if mesh_as_vertices:
# to run on cluster where headless pyrender is not supported for A100/V100
viewport_height, viewport_width = img.shape[0], img.shape[1]
vertices_2d = orthographic_projection(mesh, cam_param) # [-1,1]
vertices_2d = (vertices_2d + 1) / 2
vertices_2d[:,0] *= viewport_width
vertices_2d[:,1] *= viewport_height
img = vis_keypoints(img, vertices_2d, alpha=0.8, radius=2, color=(0, 0, 255))
else:
# mesh
mesh = trimesh.Trimesh(mesh, face)
rot = trimesh.transformations.rotation_matrix(
np.radians(180), [1, 0, 0])
mesh.apply_transform(rot)
color=[0.7, 0.7, 0.6]
material = pyrender.MetallicRoughnessMaterial(
metallicFactor=0.2,
roughnessFactor=1.0,
alphaMode='OPAQUE',
baseColorFactor=(color[0], color[1], color[2], 1.0)
)
mesh = pyrender.Mesh.from_trimesh(mesh, material=material)
scene = pyrender.Scene(bg_color=[0.0, 0.0, 0.0, 0.0], ambient_light=(0.05, 0.05, 0.05))
light = pyrender.DirectionalLight(color=[1.0, 1.0, 1.0], intensity=3.0)
light_pose = trimesh.transformations.rotation_matrix(np.radians(-45), [1, 0, 0])
scene.add(light, pose=light_pose)
light_pose = trimesh.transformations.rotation_matrix(np.radians(45), [0, 1, 0])
scene.add(light, pose=light_pose)
scene.add(mesh, 'mesh')
# focal, princpt = cam_param['focal'], cam_param['princpt']
# camera = pyrender.IntrinsicsCamera(fx=focal[0], fy=focal[1], cx=princpt[0], cy=princpt[1])
sx, sy, tx, ty = cam_param
camera = WeakPerspectiveCamera(scale=[sx, sy], translation=[tx, ty], zfar=1000.0)
camera_pose = np.eye(4)
scene.add(camera, pose=camera_pose)
# renderer
renderer = pyrender.OffscreenRenderer(viewport_width=img.shape[1], viewport_height=img.shape[0], point_size=1.0)
# render
rgb, depth = renderer.render(scene, flags=pyrender.RenderFlags.RGBA)
rgb = rgb[:,:,:3].astype(np.float32)
valid_mask = (depth > 0)[:,:,None]
# save to image
img = rgb * valid_mask + img * (1-valid_mask)
return img
|