Spaces:
Running
Running
# Install the necessary packages | |
# pip install accelerate transformers fastapi pydantic torch jinja2 | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
from pydantic import BaseModel | |
from fastapi import FastAPI | |
# Initialize the FastAPI app | |
app = FastAPI(docs_url="/") | |
# Determine the device to use | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# Load the model and tokenizer once at startup | |
model = AutoModelForCausalLM.from_pretrained( | |
"Qwen/Qwen1.5-0.5B-Chat", | |
torch_dtype="auto", | |
device_map="auto" | |
).to(device) | |
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-0.5B-Chat") | |
# Define the request model | |
class RequestModel(BaseModel): | |
input: str | |
# Define a greeting endpoint | |
def greet_json(): | |
return {"message": "working..."} | |
# Define the text generation endpoint | |
def get_response(request: RequestModel): | |
prompt = request.input | |
messages = [ | |
{"role": "system", "content": "You are a helpful assistant."}, | |
{"role": "user", "content": prompt} | |
] | |
text = tokenizer.apply_chat_template( | |
messages, | |
tokenize=False, | |
add_generation_prompt=True | |
) | |
model_inputs = tokenizer([text], return_tensors="pt").to(device) | |
generated_ids = model.generate( | |
model_inputs.input_ids, | |
max_new_tokens=512 | |
) | |
generated_ids = [ | |
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) | |
] | |
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
return {"generated_text": response} | |
# To run the FastAPI app, use the command: uvicorn <filename>:app --reload | |