Spaces:
No application file
No application file
import dlib | |
import numpy as np | |
from skimage import io | |
import random as r #imported to make the file name randomized | |
class GetPoints: #class container so that code can be reused easily, and is modular | |
def __init__(self, image): | |
self.predictor_path = "shape_predictor_68_face_landmarks.dat" | |
self.detector = dlib.get_frontal_face_detector() | |
self.predictor = dlib.shape_predictor(self.predictor_path) | |
self.img = io.imread(image) | |
self.dets = self.detector(self.img) | |
def get_coors(self): | |
save_coordinates = open(str(r.randint(0,100)) + 'coordinates.txt', 'a') #randint changes the name of the text file | |
for k, d in enumerate(self.dets): | |
shape = self.predictor(self.img, d) | |
vec = np.empty([68, 2], dtype = int) | |
for b in range(68): #gets the coordinates of the picture passed in | |
vec[b][0] = shape.part(b).x | |
vec[b][1] = shape.part(b).y | |
save_coordinates.write(str(vec[b][0]) + " "+ str(vec[b][1]) + "\n") #adds them to the randomized text file | |
extra_points = ['514 360', '294 676', '0 680', '599 588', '0 0', '0 400', '0 799', '300 799', | |
'599 799', '599 400', '599 0' , '300 0'] | |
for i in range(len(extra_points)): #this accesses the array of extra points and writes them into the text file | |
save_coordinates.write(extra_points[i] + "\n") | |
save_coordinates.close() #this closes the picture | |
name = "ted_cruz" #this will have to be gotten from the user instead of hardcoding | |
image = name + ".jpg" | |
x = GetPoints(image) #pass the file name into the class to be converted into a text file | |
x.get_coors() #this calls the object so that files can be used appropriately | |